Experimental characterization of plasma properties along the magnetic nozzle of an Electron Cyclotron Resonance thruster is presented here. A permanent magnet prototype and a solenoid prototype are tested, whose main difference relies on the magnetic field strength and topology. A cylindrical Langmuir probe is used to measure plasma potential, plasma density and electron temperature. In the permanent magnet thruster setup , a Laser Induced Fluorescence diagnostics is performed simultaneously with the Langmuir probe to measure the mean ion kinetic energy, and a Faraday gridded probe to characterize the angular plasma beam. An effective electron cooling rate has been identified, as well as the dependence of the total plasma potential drop with the mass flow rate. Results are compared with a supersonic collisionless fluid-kinetic 1D model where electron dynamics account for magnetic mirror effects and potential barriers, while ions are treated as a fluid cold species. The comparison allows to estimate the sonic transition of the plasma flow.
A kinetic paraxial model of a collisionless plasma stationary expansion in a convergent-divergent magnetic nozzle is analyzed. Monoenergetic and Maxwellian velocity distribution functions of upstream ions are compared, leading to differences in the expansion only on second and higher-order velocity moments. Individual and collective magnetic mirror effects are analyzed. Collective ones are small on the electron population since only a weak temperature anisotropy develops, but they are significant on the ions all over the nozzle. Momentum and energy equations for ions and electrons are assessed based on the kinetic solution. The ion response is different in the hot and cold limits, with the anisotropic pressure tensor being relevant in the first case. Heat fluxes of parallel and perpendicular energies have a dominant role in the electron energy equations. They do not fulfill a Fourier-type law; they are large even when electrons are near isothermal. A crude electron fluid closure based on a constant diffusion-to-convective thermal energy ratio is shown equivalent to the much invoked polytropic law. Analytical dimensionless parameter laws are derived for the nozzle total electric potential fall and the downstream residual electron temperature. Electron confinement and related current control by a thin Debye sheath and a the semi-infinite divergent magnetic nozzle are compared.
The plasma-induced magnetic field in an electron cyclotron resonance plasma thruster is measured non-intrusively by means of a diamagnetic loop that encloses the plasma flow. The calibration process is described, and parasitic currents in the thruster walls and plasma oscillations are identified as the dominant sources of uncertainty. The integrated magnetic flux is seen to depend on the applied power and less significantly on the mass flow rate. The effect of the diamagnetic loop radius is also studied by testing two loops of different diameters. To estimate the perpendicular electron pressure in the plasma from the loop measurements, two plasma beam models, 1D and 2D, are used. While both models give similar results for the small loop, they differ significantly for the large loop, showing the relevance of 2D effects when a large diamagnetic loop is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.