The binomial sequences are binary sequences that correspond to the diagonals of the binary Sierpinski’s triangle. They have fancy properties such that all the sequences with period equal to a power of 2 can be represented as the sum of a finite set of binomial sequences. Other structural properties of these sequences (period, linear complexity, construction rules, or relations among the different binomial sequences) have been analyzed in detail. Furthermore, this work enhances the close relation between the binomial sequences and a kind of Boolean networks, known as linear cellular automata. In this sense, the binomial sequences exhibit the same behavior as that of particular Boolean networks. Consequently, the binomial sequences can be considered as primary tools for generating other more complex Boolean networks with applications in communication systems and cryptography.
In cryptography, the property of randomness in pseudo-random generators is very important to avoid any pattern in output sequences, to provide security against attacks, privacy and anonymity. In this article, the randomness of the family of sequences obtained from the generalized self-shrinking generator is analyzed. Moreover, the characteristics, generalities and relationship between the t-modified self-shrinking generator and the generalized self-shrinking generator are presented. We find that the t-modified self-shrunken sequences can be generated from a generalized self-shrinking generator. Then, an in-depth analysis of randomness focused on the generalized sequences by means of complete and powerful batteries of statistical tests and graphical tools is done, providing a useful vision of the behaviour of these sequences and proving that they are suitable to be used in cryptography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.