Background In this study, we assessed the accuracy of genomic prediction for carcass weight (CWT), marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT) in Hanwoo cattle when using genomic best linear unbiased prediction (GBLUP), weighted GBLUP (wGBLUP), and a BayesR model. For these models, we investigated the potential gain from using pre-selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on imputed sequence data and from gene expression information. We used data on 13,717 animals with carcass phenotypes and imputed sequence genotypes that were split in an independent GWAS discovery set of varying size and a remaining set for validation of prediction. Expression data were used from a Hanwoo gene expression experiment based on 45 animals. Results Using a larger number of animals in the reference set increased the accuracy of genomic prediction whereas a larger independent GWAS discovery dataset improved identification of predictive SNPs. Using pre-selected SNPs from GWAS in GBLUP improved accuracy of prediction by 0.02 for EMA and up to 0.05 for BFT, CWT, and MS, compared to a 50 k standard SNP array that gave accuracies of 0.50, 0.47, 0.58, and 0.47, respectively. Accuracy of prediction of BFT and CWT increased when BayesR was applied with the 50 k SNP array (0.02 and 0.03, respectively) and was further improved by combining the 50 k array with the top-SNPs (0.06 and 0.04, respectively). By contrast, using BayesR resulted in limited improvement for EMA and MS. wGBLUP did not improve accuracy but increased prediction bias. Based on the RNA-seq experiment, we identified informative expression quantitative trait loci, which, when used in GBLUP, improved the accuracy of prediction slightly, i.e. between 0.01 and 0.02. SNPs that were located in genes, the expression of which was associated with differences in trait phenotype, did not contribute to a higher prediction accuracy. Conclusions Our results show that, in Hanwoo beef cattle, when SNPs are pre-selected from GWAS on imputed sequence data, the accuracy of prediction improves only slightly whereas the contribution of SNPs that are selected based on gene expression is not significant. The benefit of statistical models to prioritize selected SNPs for estimating genomic breeding values is trait-specific and depends on the genetic architecture of each trait.
The genomic best linear unbiased prediction (GBLUP) method has been widely used in routine genomic evaluation as it assumes a common variance for all single nucleotide polymorphism (SNP). However, this is unlikely in the case of traits influenced by major SNP. Hence, the present study aimed to improve the accuracy of GBLUP by using the weighted GBLUP (WGBLUP), which gives more weight to important markers for various carcass traits of Hanwoo cattle, such as backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Linear and different nonlinearA SNP weighting procedures under WGBLUP were evaluated and compared with unweighted GBLUP and traditional pedigree-based methods (PBLUP). WGBLUP methods were assessed over ten iterations. Phenotypic data from 10,215 animals from different commercial herds that were slaughtered at approximately 30-month-old of age were used. All these animals were genotyped using Illumina Bovine 50k SNP chip and were divided into a training and a validation population by birth date on 1 November 2015. Genomic prediction accuracies obtained in the nonlinearA weighting methods were higher than those of the linear weighting for all traits. Moreover, unlike with linear methods, no sudden drops in the accuracy were noted after the peak was reached in nonlinearA methods. The average accuracies using PBLUP were 0.37, 0.49, 0.40, and 0.37, and 0.62, 0.74, 0.67, and 0.65 using GBLUP for BFT, CWT, EMA, and MS, respectively. Moreover, these accuracies of genomic prediction were further increased to 4.84% and 2.70% for BFT and CWT, respectively by using the nonlinearA method under the WGBLUP model. For EMA and MS, WGBLUP was as accurate as GBLUP. Our results indicate that the WGBLUP using a nonlinearA weighting method provides improved predictions for CWT and BFT, suggesting that the ability of WGBLUP over the other models by weighting selected SNPs appears to be trait-dependent.
Hanwoo breed is preferred in South Korea because of the high standards in marbling and the palatability of its meat. Numerous studies have been conducted and are ongoing to increase the meat production and quality in this beef population. The aim of this study was to estimate and compare genetic parameters for carcass traits using BLUPF90 software. Four models were constructed, single trait pedigree model (STPM), single-trait genomic model (STGM), multi-trait pedigree model (MTPM), and multi-trait genomic model (MTGM), using the pedigree, phenotype, and genomic information of 7991 Hanwoo cattle. Four carcass traits were evaluated: Back fat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Heritability estimates of 0.40 and 0.41 for BFT, 0.33 and 0.34 for CWT, 0.36 and 0.37 for EMA, and 0.35 and 0.38 for MS were obtained for the single-trait pedigree model and the multi-trait pedigree model, respectively, in Hanwoo. Further, the genomic model showed more improved results compared to the pedigree model, with heritability of 0.39 (CWT), 0.39 (EMA), and 0.46 (MS), except for 0.39 (BFT), which may be due to random events. Utilization of genomic information in the form of single nucleotide polymorphisms (SNPs) has allowed more capturing of the variance from the traits improving the variance components.
BackgroundGenome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions.ResultsThe heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15.ConclusionsOur results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.
Background Korean Hanwoo cattle are known for their high meat quality, especially their high intramuscular fat compared to most other cattle breeds. Different muscles have very different meat quality traits and a study of the myogenic process in satellite cells can help us better understand the genes and pathways that regulate this process and how muscles differentiate. Results Cell cultures of Longissimus dorsi muscle differentiated from myoblast into multinucleated myotubes faster than semimembranosus . Time-series RNA-seq identified a total of 13 differentially expressed genes between the two muscles during their development. These genes seem to be involved in determining muscle lineage development and appear to modulate the expression of myogenic regulatory factors (mainly MYOD and MYF5 ) during differentiation of satellite cells into multinucleate myotubes. Gene ontology enriched terms were consistent with the morphological changes observed in the histology. Most of the over-represented terms and genes expressed during myoblast differentiation were similar regardless of muscle type which indicates a highly conserved myogenic process albeit the rates of differentiation being different. There were more differences in the enriched GO terms during the end of proliferation compared to myoblast differentiation. Conclusions The use of satellite cells from newborn Hanwoo calves appears to be a good model to study embryonic myogenesis in muscle. Our findings provide evidence that the differential expression of HOXB2 , HOXB4 , HOXB9 , HOXC8 , FOXD1 , IGFN1 , ZIC2 , ZIC4 , HOXA11 , HOXC11 , PITX1 , SIM2 and TBX4 genes could be involved in the differentiation of Longissimus dorsi and Semimembranosus muscles. These genes seem to modulate the muscle fate of the satellite cells during myogenesis through a differential expression profile that also controls the expression of some myogenic regulatory factors ( MYOD and MYF5 ). The number of differentially expressed genes across time was unsurprisingly large. In relation to the baseline day 0, there were 631, 155, 175, 519 and 586 DE genes in LD, while in SM we found 204, 0, 615, 761 and 1154 DE genes at days 1, 2, 4, 7 and 14 respectively. Electronic supplementary material The online version of this article (10.1186/s12864-019-5530-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.