Polyunsaturated omega-3 fatty acids are increasingly proposed as dietary supplements able to reduce the risk of development or progression of the Alzheimer's disease (AD). To date, the molecular mechanism through which these lipids act has not been yet univocally identified. In this work, we investigate whether omega-3 fatty acids could interfere with the fate of the Alzheimer-related amyloid peptide by tuning the microstructural and dynamical properties of the neuronal membrane. To this aim, the influence of the omega-3 lipid, 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine [22:6(cis)PC] on the biophysical properties of lipid bilayers, and on their interaction with the amyloid peptide fragment Aβ(25-35) has been investigated by Electron Spin Resonance (ESR), using spin-labeled phospholipids. The results show that the peptide selectively interacts with bilayers enriched in cholesterol (Chol) and sphingomyelin (SM). [22:6(cis)PC] enhances the Aβ(25-35)/membrane interaction, favoring a deeper internalization of the peptide among the lipid acyl chains and, consequently, hindering its pathogenic self-aggregation.
We previously reported that CSF114(Glc) detects diagnostic autoantibodies in multiple sclerosis sera. We report herein a bioinformatic analysis of myelin proteins and CSF114(Glc), which led to the identification of five sequences. These glucopeptides were synthesized and tested in enzymatic assays, showing a common minimal epitope. Starting from that, we designed an optimized sequence, SP077, showing a higher homology with both CSF114(Glc) and the five sequences selected using the bioinformatic approach. SP077 was synthesized and tested on 50 multiple sclerosis patients' sera, and was able to detect higher antibody titers as compared to CSF114(Glc). Finally, the conformational properties of SP077 were studied by NMR spectroscopy and structure calculations. Thus, the immunological activity of SP077 in the recognition of specific autoantibodies in multiple sclerosis patients' sera may be ascribed to both the optimized design of its epitopic region and the superior surface interacting properties of its C-terminal region.
C8, a short peptide characterized by three regularly spaced Trp residues, belongs to the membrane-proximal external functional domains of the feline immunodeficiency virus coat protein gp36. It elicits antiviral activity as a result of blocking cell entry and exhibits membranotropic and fusogenic activities. Membrane-proximal external functional domains of virus coat proteins are potential targets in the development of new anti-HIV drugs that overcome the limitations of the current anti-retroviral therapy. In the present work, we studied the conformation of C8 and its interaction with micellar surfaces using circular dichroism, nuclear magnetic resonance and fluorescence spectroscopy. The experimental data were integrated by molecular dynamics simulations in a micelle-water system. Our data provide insight into the environmental conditions related to the presence of the fusogenic peptide C8 on zwitterionic or negatively charged membranes. The membrane charge modulates the conformational features of C8. A zwitterionic membrane surface induces C8 to assume canonical secondary structures, with hydrophobic interactions between the Trp residues and the phospholipid chains of the micelles. A negatively charged membrane surface favors disordered C8 conformations and unspecific superficial interactions, resulting in membrane destabilization.
N6-isopentenyladenosine (i6A), a modified nucleoside belonging to the cytokinin family, has shown in humans many biological actions, including antitumoral effects through the modulation of the farnesyl pyrophosphate synthase (FPPS) activity. To investigate the relationship between i6A and FPPS, we undertook an inverse virtual screening computational target searching, testing i6A on a large panel of 3D protein structures involved in cancer processes. Experimentally, we performed an NMR investigation of i6A in the presence of FPPS protein. Both inverse virtual screening and saturation transfer difference (STD) NMR outcomes provided evidence of the structural interaction between i6A and FPPS, pointing to i6A as a valuable lead compound in the search of new ligands endowed with antitumoral potential and targeting FPPS protein.
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 20588-20593]. CB(1) receptor antagonists have been extensively studied for their possible therapeutic use in the treatment of obesity, drug abuse, and heroin addiction. In particular, many compounds acting as CB(1) receptor antagonists have been synthesized and subjected to experiments as possible anti-obesity drugs, but their therapeutic application is still complicated by important side effects. Using circular dichroism and nuclear magnetic resonance spectroscopy, this work reports the conformational analysis of hemopressin and its truncated, biologically active fragment hemopressin(1-6). The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.