In end-stage renal disease (ESRD) endothelium may represent a key target for the action of circulating elements, such as modified erythrocytes (RBC) and/or plasmatic factors, that may facilitate inflammation and the vasculopathy associated with uremia. We have previously demonstrated that phosphatidylserine (PS) exposure on the surface of RBC from ESRD patients increases RBC-human umbilical vein endothelial cell (HUVEC) interactions and causes decreased nitric oxide (NO) production. We postulated that, besides the pro-inflammatory effects due to decreased NO bio-availability, enhanced ESRD-RBC-HUVEC interactions might directly stimulate proinflammatory pathways leading to increased vascular adhesion molecule expression. ESRD-RBC-endothelial cell interactions induced a time-dependent up-regulation of VCAM-1 and ICAM-1 (measured by Western blot (WB) and real-time PCR), associated with mitogenactivated protein kinase (MAPK) activation and impairment of the Akt/endothelial nitric oxide synthase (eNOS) signaling cascade, measured by WB. In reconstitution experiments, normal RBC incubated with uremic plasma showed increased PS exposure and significantly increased VCAM-1 and ICAM-1 mRNA levels when incubated on HUVEC. Interestingly, ESRD-RBC induced increased expression of adhesion molecules was prevented by Annexin-V (AnV, able to mask PS on RBC surface), anti-integrin-avb3, antithrombospondin-1 (TSP-1), and PD98059 (a selective inhibitor of MAPK phosphorylation). Moreover, AnV reversed the ESRD-RBC effects on MAPK and Akt/eNOS signaling pathways. Our data demonstrate that, possibly via a direct interaction with the endothelial thrombospondin-(avb3) integrin complex, ESRD-RBC-HUVEC adhesion induces a vascular inflammatory phenotype. Thus, intervention targeting ESRD-RBC increased adhesion to endothelium and/or MAPK and Akt/eNOS pathways may have the potential to prevent vascular lesions under uremic conditions.
Our observations provide background for a novel mechanism for carotenoids' anti-inflammatory activity in the vasculature and may contribute to a better understanding of the protective effects of carotenoid-rich diets against CVD risk.
Inflammatory lung disease is a primary cause of morbidity and mortality in cystic fibrosis (CF). Mechanisms of unresolved acute inflammation in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in nonrespiratory cells is emerging. Here we examined CFTR expression and function in human platelets (PLTs) and found that they express a biologically active CFTR. CFTR blockade gave an ∼50% reduction in lipoxin A(4) (LXA(4)) formation during PLT/polymorphonuclear leukocytes (PMN) coincubations by inhibiting the lipoxin synthase activity of PLT 12-lipoxygenase. PLTs from CF patients generated ∼40% less LXA(4) compared to healthy subject PLTs. CFTR inhibition increased PLT-dependent PMN viability (33.0±5.7 vs. 61.2±8.2%; P=0.033), suppressed nitric oxide generation (0.23±0.04 vs. 0.11±0.002 pmol/10(8) PLTs; P=0.004), while reducing AKT (1.02±0.12 vs. 0.71±0.007 U; P=0.04), and increasing p38 MAPK phosphorylation (0.650±0.09 vs. 1.04±0.24 U; P=0.03). Taken together, these findings indicate that PLTs from CF patients are affected by the molecular defect of CFTR. Moreover, this CF PLT abnormality may explain the failure of resolution in CF.
Background-In the endothelium, insulin promotes nitric oxide (NO) production, through the insulin receptor/IRS-1/PI3-Kinase/Akt/eNOS signaling pathway. An inhibitor of insulin action, TRIB3, has recently been identified which affects insulin action by binding to and inhibiting Akt phosphorylation. We have recently described a Q84R gain-of-function polymorphism of TRIB3 with the R84 variant being associated with insulin resistance and an earlier age at myocardial infarction. Methods and Results-To investigate the TRIB3 R84 variant impact on endothelial insulin action, we cultured human umbilical vein endothelial cells (HUVECs) naturally carrying different TRIB3 genotypes (QQ-, QR-, or RR-HUVECs). TRIB3 inhibitory activity on insulin-stimulated Akt phosphorylation and the amount of protein which was coimmunoprecipitable with Akt were significantly greater in QR-and RR-as compared to QQ-HUVECs. After insulin stimulation, Akt and eNOS activation as well as NO production were markedly decreased in QR-and RR-as compared to QQ-HUVECs. TRIB3 molecular modeling analysis provided insights into the structural changes related to the polymorphisms potentially determining differences in protein-protein interaction with Akt. Conclusions-Our data demonstrate that the TRIB3 R84 variant impairs insulin signaling and NO production in human endothelial cells. This finding provides a plausible biological background for the deleterious role of TRIB3 R84 on genetic susceptibility to coronary artery disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.