Distinct gene expression patterns within cells are foundational for the diversity of functions and unique characteristics observed in specific contexts, such as human tissues and cell types. Though some biological processes commonly occur across contexts, by harnessing the vast amounts of available gene expression data, we can decipher the processes that are unique to a specific context. Therefore, with the goal of developing a portrait of context-specific patterns to better elucidate how they govern distinct biological processes, this work presents a large-scale exploration of transcriptomic signatures across three different contexts (i.e., tissues, cell types, and cell lines) by leveraging over 600 gene expression datasets categorized into 98 subcontexts. The strongest pairwise correlations between genes from these subcontexts are used for the construction of co-expression networks. Using a network-based approach, we then pinpoint patterns that are unique and common across these subcontexts. First, we focused on patterns at the level of individual nodes and evaluated their functional roles using a human protein–protein interactome as a referential network. Next, within each context, we systematically overlaid the co-expression networks to identify specific and shared correlations as well as relations already described in scientific literature. Additionally, in a pathway-level analysis, we overlaid node and edge sets from co-expression networks against pathway knowledge to identify biological processes that are related to specific subcontexts or groups of them. Finally, we have released our data and scripts at https://zenodo.org/record/5831786 and https://github.com/ContNeXt/, respectively and developed ContNeXt (https://contnext.scai.fraunhofer.de/), a web application to explore the networks generated in this work.
Excess labile heme, occurring under hemolytic conditions, displays a versatile modulator in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding to plasma proteins or through interaction with participating cell types. However, despite several independent reports on these effects, apparently contradictory observations and significant knowledge gaps characterize this relationship, which hampers a complete understanding of heme-driven coagulopathies and the development of suitable and specific treatment options. Thus, the computational exploration of the complex network of heme-triggered effects in the blood coagulation system is presented herein. Combining hemostasis- and heme-specific terminology, the knowledge available thus far was curated and modeled in a mechanistic interactome. Further, these data were incorporated in the earlier established heme knowledge graph, “HemeKG”, to better comprehend the knowledge surrounding heme biology. Finally, a pathway enrichment analysis of these data provided deep insights into so far unknown links and novel experimental targets within the blood coagulation cascade and platelet activation pathways for further investigation of the prothrombotic nature of heme. In summary, this study allows, for the first time, a detailed network analysis of the effects of heme in the blood coagulation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.