It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.
At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it is has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.
At the Drosophila bithorax complex many distinct classes of cis-regulatory modules work collectively during development to control gene expression. Abdominal-B (Abd-B) is one of three homeotic genes in the BX-C and is expressed in specific presumptive abdominal segments in the embryo. The transcription of Abd-B is tightly controlled by an array of cis-regulatory modules that direct its expression over extended genomic distances. These regulatory modules include promoters, insulators, silencers, enhancers, promoter targeting sequences and the recently identified promoter tethering element (PTE). To activate gene expression at the endogenous complex, enhancers located >50 kb away must bypass intervening insulators to interact with the Abd-B promoter. The molecular mechanisms that allow enhancers to bypass insulators are not currently well understood. In this short article, we report on a novel mechanism for insulator bypass involving the PTE. In addition, we use bioinformatic analysis across twelve Drosophila genomes to identify putative cis-regulatory sequences that may be capable of facilitating specific promoter-enhancer interactions at the bithorax complex and propose a model for their molecular function during development.
Drosophila melanogaster is a powerful model system for the study of gene regulation due to its short generation time, high fertility and the availability of various genetic tools to manipulate the genome. Investigation into the regulation of homeotic genes and their role in embryonic patterning during development was pioneered in Drosophila. Recently, the molecular mechanisms responsible for regulating gene expression in the bithorax complex have been the focus of active study. Many of these studies have pointed to the importance of cis-regulatory modules, genetic sequences that direct the temporal and spatial patterns of gene expression over large genomic distances. Additional components of the regulatory code have emerged beyond the primary DNA sequence. In particular, non-genic transcription is an important mechanism for controlling gene expression either through direct transcriptional mechanisms that mediate dynamic epigenetic control of the chromatin environment or through functional activity of the RNA products.
The diverse functional roles for RNA molecules in cells of the developing embryo have been an area of intense study in the last few years. Progress reported at the 49(th) Annual Drosophila Research Conference in San Diego, California highlighted many of the varied mechanistic activities for RNAs. In particular, talks at the 'RNA Biology' platform session provided a great deal of insight into the function of RNA transcripts and their associated protein complexes. The topics covered included: (1) a large-scale screen examining the localization of mRNAs during embryonic development, (2) mechanisms of mRNA transport in different cell types, (3) localization-dependent repression of mRNA translation and (4) the activity of the RNAi machinery in insulator-mediated chromatin structures. Our journey through the modern RNA world clearly indicates that we should be considering a much more expansive role for RNAs in molecular biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.