This study quantified the contributions by muscles, gravity, and inertia to the tibiofemoral compartment forces in the symptomatic (SYM) and asymptomatic (ASYM) limbs of varus mal-aligned medial knee osteoarthritis (OA) patients, and compared the results with healthy controls (CON). Muscle forces and tibiofemoral compartment loads were calculated using gait data from 39 OA patients and 15 controls aged 49 ± 7 years. Patients exhibited lower knee flexion angle, higher hip abduction, and knee adduction angles, lower internal knee flexion torque but higher external knee adduction moment. Muscle forces were highest in CON except hamstrings, which was highest in SYM. ASYM muscle forces were lowest for biceps femoris short head and gastrocnemius but otherwise intermediate between SYM and CON. In all subjects, vasti, hamstrings, gastrocnemius, soleus, gluteus medius, gluteus maximus, and gravity were the largest contributors to medial compartment force (MCF). Inertial contributions were negligible. Highest MCF was found in SYM throughout stance. Small increases in contributions from hamstrings, gluteus maximus, gastrocnemius, and gravity at the first peak; soleus and rectus femoris at the second peak; and soleus, gluteus maximus, gluteus medius, and gravity during mid-stance summed to produce significantly higher total MCF. Compared to CON, the ASYM limb exhibited similar peak MCF but higher mid-stance MCF. In patients, diminished non-knee-spanning muscle forces did not produce correspondingly diminished MCF contributions due to the influence of mal-alignment. Our findings emphasize consideration of muscle function, lower-limb alignment, and mid-stance loads in developing interventions for OA, and inclusion of the asymptomatic limb in clinical assessments. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:321-330, 2017.
This study quantified the contributions by muscular, gravitational and inertial forces to the ground reaction force (GRF) and external knee adduction moment (EKAM) for knee osteoarthritis (OA) patients and controls walking at similar speeds. Gait data for 39 varus mal-aligned medial knee OA patients and 15 controls were input into musculoskeletal models to calculate the contributions of individual muscles and gravity to the fore-aft (progression), vertical (support), and mediolateral (balance) GRF, and the EKAM. The temporal patterns of contributions to GRF and EKAM were similar between the groups. Magnitude differences in GRF contributions were small but some reached significance. Peak GRF contributions were lower in patients except hamstrings in early-stance progression (p < 0.001) and gastrocnemius in late-stance progression (p < 0.001). Both EKAM peaks were higher in patients, due mainly to greater adduction contribution from gravity (p < 0.001) at the first peak, and lower abduction contributions from soleus (p < 0.001) and gastrocnemius (p < 0.001) at the second peak. Gluteus medius contributed most to EKAM in both groups, but was higher in patients during mid-stance only (p < 0.001). Differences in GRF contributions were attributed to altered quadriceps-hamstrings action as well as compensatory adaptation of the ankle plantarflexors to reduced gluteus medius action. The large effect of varus mal-alignment on the frontal-plane moment arms of the gravity, soleus, and gastrocnemius GRF contributions about the knee explained greater patient EKAM. Our results shed further light on how the EKAM contributes to altered knee-joint loads in OA and why some interventions may affect different portions of the EKAM waveform. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.