bRegulations dealing with microbicides in Europe and the United States are evolving and now require data on the risk of the development of resistance in organisms targeted by microbicidal products. There is no standard protocol to assess the risk of the development of resistance to microbicidal formulations. This study aimed to validate the use of changes in microbicide and antibiotic susceptibility as initial markers for predicting microbicide resistance and cross-resistance to antibiotics. Three industrial isolates (Pseudomonas aeruginosa, Burkholderia cepacia, and Klebsiella pneumoniae) and two Salmonella enterica serovar Typhimurium strains (SL1344 and 14028S) were exposed to a shampoo, a mouthwash, eye makeup remover, and the microbicides contained within these formulations (chlorhexidine digluconate [CHG] and benzalkonium chloride [BZC]) under realistic, in-use conditions. Baseline and postexposure data were compared. No significant increases in the MIC or the minimum bactericidal concentration (MBC) were observed for any strain after exposure to the three formulations. Increases as high as 100-fold in the MICs and MBCs of CHG and BZC for SL1344 and 14028S were observed but were unstable. Changes in antibiotic susceptibility were not clinically significant. The use of MICs and MBCs combined with antibiotic susceptibility profiling and stability testing generated reproducible data that allowed for an initial prediction of the development of resistance to microbicides. These approaches measure characteristics that are directly relevant to the concern over resistance and cross-resistance development following the use of microbicides. These are low-cost, high-throughput techniques, allowing manufacturers to provide to regulatory bodies, promptly and efficiently, data supporting an early assessment of the risk of resistance development.
Aim: The extensive use of microbicides in a wide range of applications has been questioned with regard to their role in the development of bacterial resistance to antimicrobials. This study aims to measure the phenotypic and genotypic changes in Burkholderia lata strain 383 exposed to chlorhexidine gluconate (CHG) and benzalkonium chloride (BZC), two commonly used cationic microbicides. Methods and Results: The susceptibility of B. lata strain 383 to CHG and BZC and a range of antibiotics was determined using standardized MIC, MBC and antibiotic susceptibility testing protocols before and after short-term exposure to a low microbicide concentration. Measurements were performed on four separate occasions over a 1-year period. Changes in gene expression were investigated using quantitative real-time PCR. Although the susceptibility profile to CHG and BZC was not altered, a change in antibiotic susceptibility profile was observed for ceftazidime, and for imipenem and ciprofloxacin in 2/4 repeats. An outer membrane protein and ABC transporter were found to be significantly upregulated following treatment with BZC and CHG, respectively. Conclusions: The comparison of MIC and MBC results following microbicide exposure with baseline data offered a prospective protocol to quantify any change in bacterial susceptibility profile. However, the use of a standardized antibiotic susceptibility protocol with B. lata strain 383 showed some inconsistencies in results between repeats. Significance and Impact of the Study: With ever-increasing interest in the impact of microbicides on emerging antimicrobial resistance in bacteria growing, this study demonstrated that comparing susceptibility profile obtained after exposure to microbicides with baseline susceptibility values could play a role in establishing the potential risk of microbicide resistance and cross-resistance development and also in the development of a protocol that allows the prediction of microbicide resistance.
Regulatory decisions regarding microbiological safety of cosmetics and personal care products are primarily hazard-based, where the presence of a potential pathogen determines decision-making. This contrasts with the Food industry where it is a commonplace to use a risk-based approach for ensuring microbiological safety. A risk-based approach allows consideration of the degree of exposure to assess unacceptable health risks. As there can be a number of advantages in using a risk-based approach to safety, this study explores the Codex Alimentarius (Codex) four-step Microbiological Risk Assessment (MRA) framework frequently used in the Food industry and examines how it can be applied to the safety assessment of personal care products. The hazard identification and hazard characterization steps (one and two) of the Codex MRA framework consider the main microorganisms of concern. These are addressed by reviewing the current industry guidelines for objectionable organisms and analysing reports of contaminated products notified by government agencies over a recent 5-year period, together with examples of reported outbreaks. Data related to estimation of exposure (step three) are discussed, and examples of possible calculations and references are included. The fourth step, performed by the risk assessor (risk characterization), is specific to each assessment and brings together the information from the first three steps to assess the risk. Although there are very few documented uses of the MRA approach for personal care products, this study illustrates that it is a practicable and sound approach for producing products that are safe by design. It can be helpful in the context of designing products and processes going to market and with setting of microbiological specifications. Additionally, it can be applied reactively to facilitate decision-making when contaminated products are released on to the marketplace. Currently, the knowledge available may only allow a qualitative or semi-quantitative rather than fully quantitative risk assessment, but an added benefit is that the disciplined structuring of available knowledge enables clear identification of gaps to target resources and if appropriate, instigate data generation.
EEG data were recorded while 10 subjects generated refixation saccades towards a visual target and antisaccades away from a visual cue. Theoretically, the same basic neural circuitry supports refixation and correct anti-saccade performances, with additional activity in primarily dorsolateral prefrontal cortex circuitry supporting antisaccade-associated inhibitory processes. Analyses demonstrated that sensory registration of visual stimuli is similar for refixation and anti-saccade conditions. Increased frontal brain activity at 5 and 15 Hz was observed preceding correct antisaccades when compared to refixation saccades. These analyses provide specific information suggesting that 160-60 ms before saccade generation is the critical period for response inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.