Co-injection of CO2 or light hydrocarbons with steam in SAGD (Steam Assisted Gravity Drainage) process may enhance bitumen mobility and reduce Steam Oil Ratio (SOR). Understanding and modeling the phase behavior of solvent-bitumen system are essential for the development of in-situ processes for bitumen recovery. In this paper, an experimental and modeling study is undertaken to characterize the phase behavior of bitumen-CO2 and bitumen-C4 systems. Produced and dewatered oil from the Cenovus Osprey Pilot is used for the experiments. The Osprey Pilot produces oil from the Clearwater formation. Constant composition expansion (CCE) experiments are conducted for characterizing Clearwater bitumen, CO2-bitumen mixture, and C4-bitumen mixture. The Peng-Robinson equation of state (PR-EOS) is calibrated based on the measured data and used for PVT modeling. Multiphase equilibrium calculations are performed to predict the solubility of CO2 and C4 in the temperature range of 120 °C to180 °C. Further to that, dead oil viscosity measurements are conducted at similar temperature intervals to estimate oleic phase viscosity. According to the CCE tests and multiphase equilibrium calculations, C4 has much higher solubility in bitumen than CO2 at reservoir pressure of 580 psia (4,000 kpa) and temperature range of 120 °C to 180 °C. During the CCE tests, co-existence of three equilibrium phases is observed for the C4-bitumen system with 84 wt.% C4. The three phases consist of a solvent-lean (bitumen-rich) oleic phase (L1), gaseous phase (V) and a solvent-rich (bitumen-lean) oleic phase (L2). Compositional analysis of the samples from L1 and L2 phases shows that C4 can extract light hydrocarbon components from bitumen into L2 phase and preserve the heavy components in L1 phase. It is observed that the color of L2 phase becomes lighter by decreasing the pressure which may suggest extraction of lighter hydrocarbon components at lower pressures. Similar tests on the CO2-bitumen system only shows two effective phases over a similar temperature range. The two phases consist of a solvent-lean (bitumen-rich) oleic phase (L1) and a gaseous phase (V). By using the regressed EOS model, phase equilibrium regions are predicted in the compositional space for the solvent-bitumen system. EOS predictions indicate two types of two-phase regions in composition space for C4-bitumen system (i.e., L1-L2 in temperature range of 120 °C to 148 °C and L1-V in temperature range of 148 °C to180 °C). However, only one type of two-phase region (i.e., L1-V) exists in the similar temperature range for CO2-bitumen system. The EOS predictions show that 1.7 wt.% CO2 can reduce bitumen viscosity by up to 4 times, and 8.7 wt.% C4 can reduce bitumen viscosity by up to 32 times in temperature range of 120 °C to 180 °C.
Co-injection of CO2 or light hydrocarbons with steam in the SAGD process may improve SAGD efficiency and lead to lower greenhouse gas emissions through reduced Steam Oil Ratios (SORs). Various additives are postulated to have differing effects on bitumen recovery, depending on the nature of the reservoir, the operating conditions, and the API gravity of the oil. A PVT study was conducted to investigate the phase behaviour of CO2-, C3-, and C4-bitumen systems at varying concentrations, representing the edge of a SAP steam chamber with the expected temperature range of 70°C to 160°C. A produced and dewatered bitumen sample was collected from the Cenovus Osprey Pilot in the Cold Lake oil sands region and characterized. Constant Composition Expansion (CCE) experiments were conducted on solvent-bitumen systems in the temperature range of 70°C to 160°C. Filtration tests were also conducted at high temperature and reservoir pressure to investigate the effect of solvent type and concentration on asphaltene precipitation. A Peng-Robinson Equation of State (PR-EOS) model was calibrated to measured data for CO2-, C3-, and C4-bitumen systems. Viscosity of the bitumen saturated with CO2, C3, and C4 was measured with an electromagnetic-based viscometer elevated temperatures. Phase equilibrium calculations were performed using the calibrated EOS to predict the solubility of the solvents in bitumen. A correlation was fitted to the measured viscosity data to predict the liquid phase viscosity as a function of solvent solubility and temperature for each solvent. From the CCE tests, two equilibrium phases (i.e., liquid and vapour) were observed for the C3- and CO2-bitumen systems. Three equilibrium phases were observed for the C4-bitumen system at high C4 concentrations. These three phases include a bitumen-rich heavy oil phase, a solvent-rich lighter oil phase, and a vapour phase. Due to the extracting/condensing mechanism and asphaltene precipitation, the bitumen-rich phase formed in C3-bitumen system was lighter than the one in C4-bitumen system. Filtration tests showed more asphaltene precipitation by C3 and C4 dissolution than CO2. Moreover, C3 has more potential for asphaltene precipitation than C4. Viscosity measurements showed that dissolution of C3 and C4 in bitumen resulted in greater viscosity reduction than CO2 dissolution. This difference was more pronounced at lower temperatures. The highest C4 solubility in bitumen and C4 potential for forming a C4-rich liquid phase showed stronger condensing and extracting effect of C4 than C3 and CO2 in solvent-bitumen interactions. Moreover, C4 lead to more bitumen swelling than C3 and CO2. EOS predictions and viscosity measurements indicated that increasing the solvent concentration in a solvent-bitumen system beyond a defined Threshold Solvent Concentration (TSC) has an insignificant effect on solvent solubility and bitumen viscosity reduction.
Coinjecting CO2 and light hydrocarbons with steam into oil sand reservoirs can improve the efficiency of the SAGD (steam assisted gravity drainage) process by reducing the steam oil ratio (SOR). The effects of these solvents on bitumen recovery enhancement depend on reservoir properties and operating conditions. To investigate the effects of solvents on bitumen viscosity in a solvent aided process, phase behaviors and viscosities of CO2–, C3–, and C4–bitumen systems were measured and modeled at high temperatures. Using the calibrated Peng–Robinson equation of state (PR-EOS), the solubilities of solvents in the Clearwater bitumen sample from the Cold Lake region were predicted. High-pressure and high-temperature equipment using an electromagnetic-based viscometer was customized to measure the viscosities of CO2–, C3–, and C4–bitumen mixtures. The measured viscosity data were used to calibrate a nonlinear viscosity model which was used to predict liquid phase viscosity as a function of solvent solubility and temperature. The effects of solvent dissolution on bitumen viscosity were investigated using PR-EOS and the calibrated viscosity model. The results show that dissolving CO2, C3, and C4 in bitumen decreases its viscosity. This viscosity reduction is lowest and highest in the case of CO2 and C4 dissolution, respectively. The effect of solvent dissolution on viscosity reduction is more pronounced at lower temperatures. EOS predictions and viscosity measurements indicate that increasing concentration of CO2, C3, and C4 above a certain threshold has a limited effect on reducing bitumen viscosity. At threshold solvent concentrations, bitumen viscosity can be reduced by 1.7, 5.6, and 15.2 times using CO2, C3, and C4, respectively, at 120 °C. Solubility and viscosity data suggest that C4 has the potential to be used in hot-solvent recovery methods in shallow and deep oil sand reservoirs. C3 may be a more effective solvent in deeper reservoirs which allow higher operating pressures. The modified viscosity model showed better performance than the Lobe and Shu correlations and logarithmic mixing rule. This model improves existing correlations for predicting viscosities of light solvent−bitumen mixtures since it requires less input data and does not require density data.
Summary Despite promising natural gas huff ‘n’ puff (HnP) field-pilot results, the dominant oil-recovery mechanisms during this process are poorly understood. We conduct systematic natural-gas (C1 and a mixture of C1/C2 with the molar ratio of 70:30) HnP experiments on an ultratight core plug collected from the Montney tight-oil formation, under reservoir conditions (P = 137.9 bar and T = 50°C). We used a custom-designed visualization cell to experimentally evaluate mechanisms controlling gas transport into the plug during injection and soaking phases and oil recovery during the whole process. The tests also allow us to investigate effects of gas composition and initial differential pressure between injected gas and the plug (ΔPi = Pg−Po) on the gas-transport and oil-recovery mechanisms. Moreover, we performed a Péclet number, NPe, analysis to quantify the contribution of each transport mechanism during the soaking period. We found that advective-dominated transport is the mechanism responsible for the transport of gas into the plug at early times of the soaking period (NPe = 1.58 to 3.03). When the soaking progresses, NPe ranges from 0.26 to 0.62, indicating the dominance of molecular diffusion. The advective flow caused by ΔPi during gas injection and soaking leads to improved gas transport into the plug. Total system compressibility, oil swelling, and vaporization of oil components into the gas phase are the recovery mechanisms observed during gas injection and soaking, while gas expansion is the main mechanism during depressurization phase. Overall, gas expansion is the dominant mechanism, followed by total system compressibility, oil swelling, and vaporization. During the “puff” period, the expansion and flow of diffused gas drag the oil along its flowpaths, resulting in a significant flow of oil and gas observed on the surface of the plug. The enrichment of injected gas by 30-mol% C2 enhances the transport of gas into the plug and increases oil recovery compared to pure C1 cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.