Motivated by the interpretability question in ML models as a crucial element for the successful deployment of AI systems, this paper focuses on rule extraction as a means for neural networks interpretability. Through a systematic literature review, different approaches for extracting rules from feedforward neural networks, an important block in deep learning models, are identified and explored. The findings reveal a range of methods developed for over two decades, mostly suitable for shallow neural networks, with recent developments to meet deep learning models' challenges. Rules offer a transparent and intuitive means of explaining neural networks, making this study a comprehensive introduction for researchers interested in the field. While the study specifically addresses feedforward networks with supervised learning and crisp rules, future work can extend to other network types, machine learning methods, and fuzzy rule extraction.
Improving maritime operations planning and scheduling can play an important role in enhancing the sector’s performance and competitiveness. In this context, accurate ship speed estimation is crucial to ensure efficient maritime traffic management. This study addresses the problem of ship speed prediction from a Maritime Vessel Services perspective in an area of the Saint Lawrence Seaway. The challenge is to build a real-time predictive model that accommodates different routes and vessel types. This study proposes a data-driven solution based on deep learning sequence methods and historical ship trip data to predict ship speeds at different steps of a voyage. It compares three different sequence models and shows that they outperform the baseline ship speed rates used by the VTS. The findings suggest that deep learning models combined with maritime data can leverage the challenge of estimating ship speed. The proposed solution could provide accurate and real-time estimations of ship speed to improve shipping operational efficiency, navigation safety and security, and ship emissions estimation and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.