Fuzzy control of robot manipulators with a decentralized structure is facing a serious challenge. The state-space model of a robotic system including the robot manipulator and motors is in non-companion form, multivariable, highly nonlinear, and heavily coupled with a variable input gain matrix. Considering the problem, causes and solutions, we use voltage control strategy and convergence analysis to design a novel precise robust fuzzy control (PRFC) approach for electrically driven robot manipulators. The proposed fuzzy controller is Mamdani type and has a decentralized structure with guaranteed stability. In order to obtain a precise response, we regulate a fuzzy rule which governs the origin of the tracking space. The proposed design is verified by stability analysis. Simulations illustrate the superiority of the PRFC over a proprotional derivative like (PD-like) fuzzy controller applied on a selective compliant assembly robot arm (SCARA) driven by permanent magnet DC motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.