This review focuses on recent developments in hybrid and nanostructured substrates for SERS (surface-enhanced Raman scattering) studies. Thus substrates composed of at least two distinct types of materials, in which one is a SERS active metal, are considered here aiming at their use as platforms for chemical detection in a variety of contexts. Fundamental aspects related to the SERS effect and plasmonic behaviour of nanometals are briefly introduced. The materials described include polymer nanocomposites containing metal nanoparticles and coupled inorganic nanophases. Chemical approaches to tailor the morphological features of these substrates in order to get high SERS activity are reviewed. Finally, some perspectives for practical applications in the context of chemical detection of analytes using such hybrid platforms are presented.
Nanocomposites containing Ag nanoparticles (average diameter $11 nm) dispersed in poly(tertbutylacrylate) were prepared by in situ polymerization via miniemulsions and constitute active and versatile SERS substrates. The use of this synthetic strategy enables the dual use of the final composites as SERS substrates, both as aqueous emulsions and as cast films, shown here by several measurements using thiosalicylic acid as the testing analyte. The main advantage of these types of materials is related to the potential to scale up and the widespread use of handy substrates, using technology already available. This requires homogeneous composite substrates with SERS activity and this was demonstrated here by means of confocal Raman microscopy. Finally, a series of experiments were carried out on Ag/polymer nanocomposites submitted to temperature variations below and above the polymer glass transition temperature (T g ) in order to conclude about the effect of temperature processing conditions on the composites' SERS activity.
Magnetic hydrogel kappa-carrageenan nanospheres were successfully prepared via water-in-oil (w/o) microemulsions combined with thermally induced gelation of the polysaccharide. The size of the nanospheres (an average diameter of about 50 and 75 nm) was modulated by varying the concentration of surfactant. The nanospheres contained superparamagnetic magnetite nanoparticles (average diameter 8 nm), previously prepared by co-precipitation within the biopolymer. Carboxyl groups, at a concentration of about 4 mmol g(-1), were successfully grafted at the surface of these magnetic nanospheres via carboxymethylation of the kappa-carrageenan. The carboxylated nanospheres were shown to be thermo-sensitive in the 37-45 degrees C temperature range, indicating their potential as thermally controlled delivery systems for drugs and/or magnetic particles at physiological temperatures. Finally, preliminary results have been obtained for IgG antibody conjugation of the carboxylated nanospheres and the potential of these systems for bio-applications is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.