Geodetic measurements from a network of permanent GPS stations along the Pacific coast of Mexico reveal a large “silent earthquake” along the segment of the Cocos‐North American plate interface identified as the Guerrero seismic gap. The event began in October of 2001 and lasted for 6–7 months. Average slip of ∼10 cm produced measurable displacements over an area of ∼550 × 250 km2. The equivalent moment magnitude of the event was Mw ∼ 7.5. Recognition of this and previous slow event here indicate that the seismogenic portion of the plate interface is not loading steadily, as hitherto believed, but is rather partitioning the stress buildup with episodic, as opposed to steady‐state or periodic, slip downdip of the seismogenic zone. This process increases the stress at the base of the seismogenic zone, bringing it closer to failure. These results call for a reassessment of the seismic potential of Guerrero and other seismic gaps in Mexico.
[1] The world's largest observed Slow Slip Events (SSE) occurred in 2001-2002 and 2006 in the Guerrero subduction zone, Mexico. Using an improved GPS processing that accounts for time-varying atmospheric phenomena as well as oceanic, atmospheric and hydrologic loading corrections, the 11 year GPS position time series in Guerrero show a noise reduction of ∼50% with respect to previous studies. Thanks to the improved position time series and, in particular, the simultaneous analysis of the three-dimensional GPS observations, we can provide new information about SSEs in the studied area. First, we detect seven nonperiodic anomalous displacements with subcentimeter amplitude, but no quasi-annual anomalies as proposed previously. The displacements seem to occur simultaneously with the observed peaks of non-volcanic tremor activity in the area. Second, we refine the characteristics of the two major SSEs in terms of timing, duration, and cumulative displacements, and highlight the complex surface spatiotemporal evolution of the displacements during these SSEs. In particular, we observe a clear initiation phase for the 2006 SSE as well as ending phases for both large SSEs. The ending phase shows a strong deceleration of the anomalous displacements with respect to the main displacement phase already observed, for the 2001-2002 and 2006 SSEs. The duration of the SSEs increases by 30-40% including the initiation and ending phases. For the 2006 SSE, the main displacement phase also shows spatiotemporal complexity. Our results demonstrate the need for improved three-dimensional GPS processing technique in order to undertake detailed studies of SSEs.
The aseismic slow slip event of [2001][2002] in Guerrero, Mexico, with an equivalent magnitude M W ∼ 7.5, is the largest silent earthquake (SQ) among many recently recorded by GPS in different subduction zones (i.e. Japan, Alaska, Cascadia, New Zealand). The sub-horizontal and shallow plate interface in Central Mexico is responsible for specific conditions for the ∼100 km long extended transient zone where the SQs develop from ∼80 to ∼190 km inland from the trench. This wide transient zone and relatively large slow slips of 10 to 20 cm displacements on the subduction fault result in noticeable surface displacements of 5-6 cm during the SQs. Continuous GPS stations allow one to trace the propagation of SQs, and to estimate their arrival time, duration and geometric attenuation. These propagation parameters must be accounted in order to locate source of slow slips events and to understand the triggering effect that they have on large subduction earthquakes. We use longbaseline tiltmeter data to define new time limits This modeling shows that the SQ ceased gradually in the central part of the Oaxaca segment of the subduction zone (west of Puerto Angel, PUAN) and then it apparently triggered another SQ in SE Oaxaca (between PUAN and Salina Cruz, SACR). The estimated horizontal velocities for inter-event epochs at each GPS site are used to assess an average interplate coupling in the Central Oaxaca subduction zone.
Either the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.