Background The CTLA-4 blocking antibody ipilimumab has demonstrated substantial and durable effects in patients with melanoma. While CTLA-4 therapy, both as monotherapy and in combination with PD-1 targeting therapies, has great potential in many indications, the toxicities of the current treatment regimens may limit their use. Thus, there is a medical need for new CTLA-4 targeting therapies with improved benefit-risk profile. Methods ATOR-1015 is a human CTLA-4 x OX40 targeting IgG1 bispecific antibody generated by linking an optimized version of the Ig-like V-type domain of human CD86, a natural CTLA-4 ligand, to an agonistic OX40 antibody. In vitro evaluation of T-cell activation and T regulatory cell (Treg) depletion was performed using purified cells from healthy human donors or cell lines. In vivo anti-tumor responses were studied using human OX40 transgenic (knock-in) mice with established syngeneic tumors. Tumors and spleens from treated mice were analyzed for CD8 + T cell and Treg frequencies, T-cell activation markers and tumor localization using flow cytometry. Results ATOR-1015 induces T-cell activation and Treg depletion in vitro. Treatment with ATOR-1015 reduces tumor growth and improves survival in several syngeneic tumor models, including bladder, colon and pancreas cancer models. It is further demonstrated that ATOR-1015 induces tumor-specific and long-term immunological memory and enhances the response to PD-1 inhibition. Moreover, ATOR-1015 localizes to the tumor area where it reduces the frequency of Tregs and increases the number and activation of CD8 + T cells. Conclusions By targeting CTLA-4 and OX40 simultaneously, ATOR-1015 is directed to the tumor area where it induces enhanced immune activation, and thus has the potential to be a next generation CTLA-4 targeting therapy with improved clinical efficacy and reduced toxicity. ATOR-1015 is also expected to act synergistically with anti-PD-1/PD-L1 therapy. The pre-clinical data support clinical development of ATOR-1015, and a first-in-human trial has started (NCT03782467). Electronic supplementary material The online version of this article (10.1186/s40425-019-0570-8) contains supplementary material, which is available to authorized users.
Despite temozolomide (TMZ) treatment, the prognosis for patients with glioblastoma multiforme is still dismal. As dose escalation of TMZ is limited by systemic toxicity, intratumoral delivery emerges as an attractive treatment modality, which may sustain cytotoxic drug concentrations intratumorally and induce immunogenic cell death. Both clinical and experimental gliomas have responded to immunotherapy, but the benefit of simultaneous chemo- and immunotherapy is inadequately studied. Here, we monitored survival of GL261-bearing C57BL/6 mice following a 3-day treatment with either intratumoral TMZ (micro-osmotic pump, 4.2 mg/kg/day) or systemic TMZ (i.p. injections, 50 mg/kg/day) alone, or combined with immunization using GM-CSF secreting GL261 cells. Peripheral and intratumoral leukocytes were analyzed by flow cytometry and immunohistochemistry. Intratumoral TMZ induced higher survival rate than systemic TMZ (45 vs. 8%). When T cells were depleted following intratumoral TMZ, the therapeutic effect was completely abrogated (0 % survival). Intratumoral TMZ synergistically increased survival rate of immunized mice (from 25 to 83%), while systemic TMZ failed (0%). While systemic TMZ induced a transient leukopenia, intratumoral TMZ and immunotherapy sustained the proliferation of CD8+ T cells and decreased the number of intratumoral immunosuppressive cells. In conclusion, intratumoral TMZ alone or in combination with immunotherapy could cure glioma-bearing mice, due to attenuation of local immunosuppression and increase in potential effector immune cells.
We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNc of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNc systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation. Indeed, the combined therapy induced a systemic increase of both immature and mature myeloid cells but also an increase in T regulatory cells (T-regs). Cytotoxic anti-tumor responses, mirrored by an increase in Granzyme B-positive cells as well as IFNc-producing T-cells, were augmented after immunizations with GM-CSF and IFNc. We also show that the combined therapy induced a long-term memory with rejection of intracerebral (i.c.) rechallenges. Depletion of Tcells showed that both CD4 1 and CD8 1 T-cells were essential for the combined GM-CSF and IFNc effect. Finally, when immunizations were delayed until day 5 after tumor inoculation, only mice receiving immunotherapy with both GM-CSF and IFNc survived. We conclude that the addition of recombinant IFNc to immunizations with GM-CSF producing tumor cells increased the number of activated tumoricidal T-cells, which could eradicate established intracerebral tumors. These results clearly demonstrate that the combination of cytokines in immunotherapy of brain tumors have synergistic effects that have implications for clinical immunotherapy of human malignant brain tumors.
Glioblastoma multiforme is the most common and aggressive malignant brain tumor in humans and the prognosis is very poor despite conventional therapy. Immunotherapy represents a novel treatment approach, but the effect is often weakened by release of immune suppressive molecules such as prostaglandins. In the current study we investigated the effect of immunotherapy with irradiated interferon-γ (IFN-γ) secreting tumor cells and administration of the selective cyclooxygease-2 (COX-2) inhibitor parecoxib as treatment of established rat brain tumors. COX-2 inhibition and immunotherapy significantly enhanced the long-term cure rate (81% survival) compared to immunotherapy alone (19% survival) and there was a significant increase in plasma IFN-γ levels in animals treated with the combined therapy, suggesting a systemic T helper 1 immune response. COX-2 inhibition alone, however, did neither induce cure nor prolonged survival. The tumor cells were identified as the major source of COX-2 both in vivo and in vitro and unmodified tumor cells produced prostaglandin E 2 in vitro, while the IFN-γ expressing tumor cells secreted significantly lower levels. In conclusion, we show that immunotherapy of experimental brain tumors is greatly potentiated when combined with COX-2 inhibition. Based on our results, the clinically available drug parecoxib may be added to immunotherapy against human brain tumors. Furthermore, the discovery that IFN-γ plasma levels can be used to determine the ongoing in vivo immune response has translational potential.
CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.