In polluted environments, contaminant effects may be manifested via both direct toxicity to the host and changes in its microbiota, affecting bacteria-host interactions. In this context, particularly relevant is exposure to antibiotics released into environment. We examined effects of the antibiotic trimethoprim on microbiota of Daphnia magna and concomitant changes in the host feeding. In daphnids exposed to 0.25 mg L(-1) trimethoprim for 24 h, the microbiota was strongly affected, with (1) up to 21-fold decrease in 16S rRNA gene abundance and (2) a shift from balanced communities dominated by Curvibacter, Aquabacterium, and Limnohabitans in controls to significantly lower diversity under dominance of Pelomonas in the exposed animals. Moreover, decreased feeding and digestion was observed in the animals exposed to 0.25-2 mg L(-1) trimethoprim for 48 h and then fed 14C-labeled algae. Whereas the proportion of intact algal cells in the guts increased with increased trimethoprim concentration, ingestion and incorporation rates as well as digestion and incorporation efficiencies decreased significantly. Thus, antibiotics may impact nontarget species via changes in their microbiota leading to compromised nutrition and, ultimately, growth. These bacteria-mediated effects in nontarget organisms may not be unique for antibiotics, but also relevant for environmental pollutants of various nature.
To apply biomarkers of oxidative stress in laboratory and field settings, an understanding of their responses to changes in physiological rates is important. The evidence is accumulating that caloric intake can increase production of reactive oxygen species and thus affect background variability of oxidative stress biomarkers in ecotoxicological testing. This study aimed to delineate effects of food intake and xenobiotics on oxidative biomarkers in Daphnia magna. Antioxidant capacity measured as oxygen radical absorbance capacity (ORAC) and lipid peroxidation assayed as thiobarbituric acid reactive substances (TBARS) were measured. Food intake was manipulated by varying food densities or by exposing the animals to chemicals inhibiting feeding rate (pharmaceutical haloperidol and pesticide lindane). Feeding rate proved to affect both protein, ORAC, and TBARS in unexposed daphnids. However, there was no significant effect of feeding rate on the protein-specific ORAC values. Both substances affected individual protein and ORAC levels and changed their relationship to feeding rate. Our results show that inhibition of feeding rate influenced the interpretation of biomarker response and further emphasize the importance of understanding (1) baseline variability in potential biomarkers due to variations in metabolic state and (2) the contribution of feeding rate on toxic response of biomarkers.
The ubiquitous use of pharmaceuticals has resulted in a continuous discharge into wastewater and pharmaceuticals and their metabolites are found in the environment. Due to their design towards specific drug targets, pharmaceuticals may be therapeutically active already at low environmental concentrations. Several human drug targets are evolutionary conserved in aquatic organisms, raising concerns about effects of these pharmaceuticals in non-target organisms. In this study, we hypothesized that the toxicity of a pharmaceutical towards a non-target invertebrate depends on the presence of the human drug target orthologs in this species. This was tested by assessing toxicity of pharmaceuticals with (miconazole and promethazine) and without (levonorgestrel) identified drug target orthologs in the cladoceran Daphnia magna. The toxicity was evaluated using general toxicity endpoints at individual (immobility, reproduction and development), biochemical (RNA and DNA content) and molecular (gene expression) levels. The results provide evidence for higher toxicity of miconazole and promethazine, i.e. the drugs with identified drug target orthologs. At the individual level, miconazole had the lowest effect concentrations for immobility and reproduction (0.3 and 0.022 mg L−1, respectively) followed by promethazine (1.6 and 0.18 mg L−1, respectively). At the biochemical level, individual RNA content was affected by miconazole and promethazine already at 0.0023 and 0.059 mg L−1, respectively. At the molecular level, gene expression for cuticle protein was significantly suppressed by exposure to both miconazole and promethazine; moreover, daphnids exposed to miconazole had significantly lower vitellogenin expression. Levonorgestrel did not have any effects on any endpoints in the concentrations tested. These results highlight the importance of considering drug target conservation in environmental risk assessments of pharmaceuticals.
Abstract. Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ∼ 365–1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.