Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which, upon absorption by the host is converted into trimethylamine-N-oxide (TMAO) in the liver. A high accumulation of both components is related to cardiovascular disease, inflammatory bowel disease, non-alcoholic fatty liver disease, and chronic kidney disease. However, the relationship between the microbiota production of these components and its impact on these diseases still remains unknown. In this review, we will address which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., the genotype) and diet affect TMA production, and the colonization of these microbes and the reversal of dysbiosis as a therapy for these diseases.
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide. While it has been suggested to cause nervous impairment, its neurophysiological basis remains unknown. Therefore, the aim of this study is to unravel the effects of NASH, through the interrelationship of liver, gut microbiota, and nervous system, on the brain and human behavior. To this end, 40 Sprague-Dawley rats were divided into a control group that received normal chow and a NASH group that received a high-fat, high-cholesterol diet. Our results show that 14 weeks of the high-fat, high-cholesterol diet induced clinical conditions such as NASH, including steatosis and increased levels of ammonia. Rats in the NASH group also demonstrated evidence of gut dysbiosis and decreased levels of short-chain fatty acids in the gut. This may explain the deficits in cognitive ability observed in the NASH group, including their depressive-like behavior and short-term memory impairment characterized in part by deficits in social recognition and prefrontal cortex-dependent spatial working memory. We also reported the impact of this NASH-like condition on metabolic and functional processes. Brain tissue demonstrated lower levels of metabolic brain activity in the prefrontal cortex, thalamus, hippocampus, amygdala, and mammillary bodies, accompanied by a decrease in dopamine levels in the prefrontal cortex and cerebellum and a decrease in noradrenalin in the striatum. In this article, we emphasize the important role of ammonia and gut-derived bacterial toxins in liver-gut-brain neurodegeneration and discuss the metabolic and functional brain regional deficits and behavioral impairments in NASH.
Nonalcoholic steatohepatitis (NASH) is one of the most prevalent diseases globally. A high-fat, high-cholesterol (HFHC) diet leads to an early NASH model. It has been suggested that gut microbiota mediates the effects of diet through the microbiota–gut–brain axis, modifying the host’s brain metabolism and disrupting cognition. Here, we target NASH-induced cognitive damage by testing the impact of environmental enrichment (EE) and the administration of either Lacticaseibacillus rhamnosus GG (LGG) or Akkermansia muciniphila CIP107961 (AKK). EE and AKK, but not LGG, reverse the HFHC-induced cognitive dysfunction, including impaired spatial working memory and novel object recognition; however, whereas AKK restores brain metabolism, EE results in an overall decrease. Moreover, AKK and LGG did not induce major rearrangements in the intestinal microbiota, with only slight changes in bacterial composition and diversity, whereas EE led to an increase in Firmicutes and Verrucomicrobia members. Our findings illustrate the interplay between gut microbiota, the host’s brain energy metabolism, and cognition. In addition, the findings suggest intervention strategies, such as the administration of AKK, for the management of the cognitive dysfunction related to NASH.
Endurance training promotes exercise-induced adaptations in brain, like hippocampal adult neurogenesis and autophagy induction. However, resistance training effect on the autophagy response in the brain has not been much explored. Questions such as whether partial systemic autophagy or the length of training intervention affect this response deserve further attention. Therefore, 8-week-old male wild-type (Wt; n = 36) and systemic autophagy-deficient (atg4b −/− , KO; n = 36) mice were randomly distributed in three training groups, resistance (R), endurance (E), and control (non-trained), and in two training periods, 2 or 14 weeks. R and E maximal tests were evaluated before and after the training period. Forty-eight hours after the end of training program, cerebral cortex, striatum, hippocampus, and cerebellum were extracted for the analysis of autophagy proteins (LC3B-I, LC3B-II, and p62). Additionally, hippocampal adult neurogenesis was determined by doublecortin-positive cells count (DCX+) in brain sections. Our results show that, in contrast to Wt, KO were unable to improve R after both trainings. Autophagy levels in brain areas may be modified by E training only in cerebral cortex of Wt trained for 14 weeks, and in KO trained for 2 weeks. DCX + in Wt increased in R and E after both periods of training, with R for 14 weeks more effective than E. Interestingly, no changes in DCX + were observed in KO after 2 weeks, being even undetectable after 14 weeks of intervention. Thus, autophagy is crucial for R performance and for exercise-induced adult neurogenesis. K E Y W O R D SAtg4b, autophagy impairment, brain, endurance training, physical activity | 239 CODINA-MARTÍNEZ ET Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.