The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches.
Despite significant advancements in wireless sensor networks (WSNs), energy conservation in the networks remains one of the most important research challenges. One approach commonly used to prolong the network lifetime is through aggregating data at the cluster heads (CHs). However, there is possibility that the CHs may fail and function incorrectly due to a number of reasons such as power instability. During the failure, the CHs are unable to collect and transfer data correctly. This affects the performance of the WSN. Early detection of failure of CHs will reduce the data loss and provide possible minimal recovery efforts. This paper proposes a self-configurable clustering (SCCH) mechanism to detect the disordered CHs and replace them with other nodes. Simulation results verify the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.