The glutathione-mediated retro Michael-type addition reaction is demonstrated to take place at the interface of small water-soluble maleimide-functionalized gold nanoparticles (Maleimide-AuNP). The retro Michael-type addition reaction can be blocked by hydrolyzing the Michael addition thioether adduct at the nanoparticle's interface under reaction conditions that do not cause AuNP decomposition. This procedure "locks" the molecule of interest onto the Maleimide-AuNP template for potential uses in medical imaging and bioconjugation, ensuring no loss of the molecular cargo from the nanocarrier. On the other hand, the glutathione-mediated retro Michael-type addition reaction can be exploited for delivering a molecular payload. As a proof of concept, a fluorogenic molecular cargo was incorporated onto a Maleimide-AuNP and delivered via the glutathione-mediated retro Michael-type addition reaction.
3-Aryl-3-(trifluormethyl)diazirine functionalized highly fluorinated phosphonium salts (HFPS) were synthesized, characterized, and utilized as photoinduced carbene precursors for covalent attachment of the HFPS onto cotton/paper to impart hydrophobicity to these surfaces. Irradiation of cotton and paper, as proof of concept substrates, treated with the diazirine-HFPS leads to robust hydrophobic cotton and paper surfaces with antiwetting properties, whereas the corresponding control samples absorb water readily. The contact angles of water were determined to be 139° and 137° for cotton and paper, respectively. In contrast, water placed on the untreated or the control samples (those treated with the diazirine-HFPS but not irradiated) is simply absorbed into the surface. Additionaly, the chemically grafted hydrophobic coating showed high durability toward wash cycles and sonication in organic solvents. Because of the mode of activation to covalently tether the hydrophobic coating, it is amenable to photopatterning, which was demonstrated macroscopically.
A novel bioorthogonal gold nanoparticle
(AuNP) template displaying
interfacial nitrone functional groups for bioorthogonal interfacial
strain-promoted alkyne–nitrone cycloaddition reactions has
been synthesized. These nitrone–AuNPs were characterized in
detail using 1H nuclear magnetic resonance spectroscopy,
transmission electron microscopy, thermogravimetric analysis, and
X-ray photoelectron spectroscopy, and a nanoparticle raw formula was
calculated. The ability to control the conjugation of molecules of
interest at the molecular level onto the nitrone–AuNP template
allowed us to create a novel methodology for the synthesis of AuNP-based
radiolabeled probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.