Counting the population of insect pests is a key task for planning a successful integrated pest management program. Most image processing and machine vision techniques in the literature are very site-specific and cannot be easily re-usable because their performances are highly related to their ground truth data. In this article a new unsupervised image processing method is proposed which is general and easy to use for non-experts. In this method firstly a hypothesis framework is defined to distinguish pests from other particles in a captured image after texture, color and shape analyses. Then, the decision about each hypothesis is made by estimating a distribution function for sizes of particles which are presented in the image. Performance of the proposed method is evaluated on real captured images that belong to plants in green houses and farms with low and high densities of whiteflies. The obtained results show the greater ability of the proposed method in counting whiteflies on crop leaves compared to adaptive thresholding and K-means algorithms. Furthermore it is shown that better counting of the pest by proposed algorithm not only doesn't lead to extracting more false objects but also it decreases the rate of false detections compared to the results of the alternative algorithms.
ABSTRACT:Cloude-Pottier entropy and α-angle are two important parameters for the interpretation of fully polarimetric data. They indicate the randomness of the polarisation of the back scattered waves and the scattering mechanisms of the targets respectively. For fully polarimetric data the H-α plane is presented which using the borders of it the full polarimetric data can be classified into 8 different physical scattering mechanisms. In recent years new approaches have proposed H-α classification spaces by mapping the points which are belong to each PSMs of FP data into the space of H/α for CP data and approximate borders were extracted for the classification purpose. In this paper a novel approach for defining H/α classification plane has been presented which maximizes the producer's accuracy. The optimum borders have been found and the results of classification using the new plane have been compared with the rival method and the superiority of the new proposed method has been revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.