The lack of an efficient, robust, and inexpensive water oxidation catalyst (WOC) is arguably the biggest challenge for the technological development of artificial photosynthesis devices. Here we report the catalytic activity found in a cobalt hexacyanoferrate (CoHCF) Prussian blue-type coordination polymer. This material is competitive with state-of-the-art metal oxides and exhibits an unparalleled long-term stability at neutral pH and ambient conditions, maintaining constant catalytic rates for weeks. In addition to its remarkable catalytic activity, CoHCF adds the typical properties of molecule-based materials: transparency to visible light, porosity, flexibility, processability, and low density. Such features make CoHCF a promising WOC candidate for advancement in solar fuels production.
The polyanion of formula {Co(9)(H(2)O)(6)(OH)(3)(HPO(4))(2)(PW(9)O(34))(3)}(16-) (Co(9)) contains a central nonacobalt core held together by hydroxo and hydrogen phosphate bridges and supported by three lacunary Keggin-type polyphosphotungstate ligands. Our data demonstrate that Co(9) is a homogeneous catalyst for water oxidation. Catalytic water electrolysis on fluorine-doped tin oxide coated glass electrodes occurs at reasonable low overpotentials and rates when Co(9) is present in a sodium phosphate buffer solution at neutral pH. We carried out our experiments with an excess of 2,2'-bipyridyl as the chelating agent for free aqueous Co(II) ions, in order to avoid the formation of a cobalt oxide film on the electrode, as observed for other polyoxometalate catalysts. In these conditions, no heterogeneous catalyst forms on the anode, and it does not show any deposited material or significant catalytic activity after a catalytic cycle. Co(9) is also an extremely robust catalyst for chemical water oxidation. It is able to continuously catalyze oxygen evolution during days from a buffered sodium hypochlorite solution, maintaining constant rates and efficiencies without any significant apparition of fatigue.
Polyoxometalates (POMs) represent a class of nanomaterials, which hold enormous promise for a range of energy-related applications. Their promise is owing to their “special” structure that gives POMs a truly...
An insoluble salt of the water oxidation catalyst [Co9(H2O)6(OH)3(HPO4)2(PW9O34)3](16-) (Co9) has been used to modify amorphous carbon paste electrodes. The catalytic activity of this polyoxometalate is maintained in the solid state. Good catalytic rates are reached at reasonable overpotentials. As a heterogeneous catalyst, Co9 shows a remarkable long-term stability in turnover conditions. The oxygen evolution rate remains constant for hours without the appearance of any sign of fatigue or decomposition in a large pH range, including acidic conditions, where metal oxides are unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.