Past studies of tectonically active mountain ranges have suggested strong coupling and feedbacks between climate, tectonics and topography. For example, rock uplift generates topographic relief, thereby enhancing precipitation, which focuses erosion and in turn influences rates and spatial patterns of further rock uplift. Although theoretical links between climate, erosion and uplift have received much attention, few studies have shown convincing correlations between observable indices of these processes on mountain-range scales. Here we show that strongly varying long-term (>10(6)-10(7) yr) erosion rates inferred from apatite (U-Th)/He cooling ages across the Cascades mountains of Washington state closely track modern mean annual precipitation rates. Erosion and precipitation rates vary over an order of magnitude across the range with maxima of 0.33 mm yr(-1) and 3.5 m yr(-1), respectively, with both maxima located 50 km west (windward) of the topographic crest of the range. These data demonstrate a strong coupling between precipitation and long-term erosion rates on the mountain-range scale. If the range is currently in topographic steady state, rock uplift on the west flank is three to ten times faster than elsewhere in the range, possibly in response to climatically focused erosion.
Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.