Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.
The nutritional quality of quinoa is often related to the high protein content of their seeds. However, and despite not being an oilseed crop, the oil composition of quinoa seeds is remarkable due to its profile, which shows a high proportion of polyunsaturated fatty acids (PUFAs), particularly in essential fatty acids such as linoleic (ω-6) and α-linolenic (ω-3). In line with this, this study aimed at evaluating the effect of elevated temperatures on the oil composition of different quinoa cultivars grown in the field in two consecutive years (i.e., 2017 and 2018). In 2017, heat stress episodes resulted in a reduced oil content and lower quality linked to decreased ratios of oleic acid:linoleic acid, larger omega-6 (ω-6) to omega-3 (ω-3) ratios, and lower monounsaturated fatty acid (MUFA) and higher PUFA contents. Furthermore, the correlations found between mineral nutrients such as phosphorous (P) and the contents of oleic and linoleic acids emphasize the possibility of optimizing oil quality by controlling fertilization. Overall, the results presented in this study show how the environmental and genetic factors and their interaction may impact oil quality in quinoa seeds.
Exploiting the relationship between the nutritional properties of seeds and the genetic background constitutes an essential analysis, which contributes to broadening our knowledge regarding the control of the nutritional quality of seeds or any other edible plant structure. This is an important aspect when aiming at improving the nutritional characteristics of crops, including those of Chenopodium quinoa Willd. (quinoa), which has the potential to contribute to food security worldwide. Previous works have already described changes in the nutritional properties of quinoa seeds due to the influence of the environment, the genotype, or their interaction. However, there is an important limitation in the analyses carried out, including the outcomes that can be translated into agronomical practices and their effect on seed quality. In the present study, several seed nutritional-related parameters were analyzed in 15 quinoa cultivars grown in a particular environmental context. Important agronomical and nutritional differences were found among cultivars, such as variations in mineral or protein contents and seed viability. More importantly, our analyses revealed key correlations between seed quality-related traits in some cultivars, including those that relate yield and antioxidants or yield and the germination rate. These results highlight the importance of considering the genotypic variation in quinoa when selecting improved quinoa varieties with the best nutritional characteristics for new cultivation environments.
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.