AGS-16C3F is an antibody-drug conjugate (ADC) against ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) containing the mcMMAF linker-payload currently in development for treatment of metastatic renal cell carcinoma. AGS-16C3F and other ADCs have been reported to cause ocular toxicity in patients by unknown mechanisms. To investigate this toxicity, we developed an assay using human corneal epithelial cells (HCEC) and show that HCECs internalized AGS-16C3F and other ADCs by macropinocytosis, causing inhibition of cell proliferation. We observed the same mechanism for target-independent internalization of AGS-16C3F in fibroblasts and human umbilical vein endothelial cells (HUVEC). Macropinocytosis-mediated intake of macromolecules is facilitated by the presence of positive charges or hydrophobic residues on the surface of the macromolecule. Modification of AGS-16C3F, either by attachment of poly-glutamate peptides, mutation of residue K16 to D on AGS-16C3F [AGS-16C3F(K16D)], or decreasing the overall hydrophobicity via attachment of polyethylene glycol moieties, significantly reduced cytotoxicity against HCECs and other primary cells. Rabbits treated with AGS-16C3F showed significant ocular toxicity, whereas those treated with AGS-16C3F(K16D) presented with less severe and delayed toxicities. Both molecules displayed similarantitumor activity in a mouse xenograft model. These findings establish a mechanism of action for target-independent toxicities of AGS-16C3F and ADCs in general, and provide methods to ameliorate these toxicities. These findings reveal a mechanism for nonreceptor-mediated toxicities of antibody drug conjugates and potential solutions to alleviate these toxicities. .
Neutropenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC) and we aimed to elucidate the potential mechanism of this toxicity. To investigate whether ADCs affect neutrophil production from bone marrow, an assay was developed in which hematopoietic stem cells (HSC) were differentiated to neutrophils. Several antibodies against targets absent in HSCs and neutrophils were conjugated to MMAE via a cleavable valine-citrulline linker (vcMMAE-ADC) or MMAF via a noncleavable maleimidocaproyl linker (mcMMAF-ADC), and their cytotoxicity was tested in the neutrophil differentiation assay. Results showed that HSCs had similar sensitivity to vcMMAE-ADCs and mcMMAF-ADCs; however, vcMMAE-ADCs were more cytotoxic to differentiating neutrophils than the same antibody conjugated to mcMMAF. This inhibitory effect was not mediated by internalization of ADC either by macropinocytosis or FcγRs. Our results suggested that extracellular proteolysis of the cleavable valine-citrulline linker is responsible for the cytotoxicity to differentiating neutrophils. Mass spectrometry analyses indicated that free MMAE was released from vcMMAE-ADCs in the extracellular compartment when they were incubated with differentiating neutrophils or neutrophil conditioned medium, but not with HSC-conditioned medium. Using different protease inhibitors, our data suggested that serine, but not cysteine proteases, were responsible for the cleavage. experiments demonstrated that the purified serine protease, elastase, was capable of releasing free MMAE from a vcMMAE-ADC. Here we propose that ADCs containing protease cleavable linkers can contribute to neutropenia via extracellular cleavage mediated by serine proteases secreted by differentiating neutrophils in bone marrow. .
Thrombocytopenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC), including AGS-16C3F, an ADC targeting ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase-3) and trastuzumab emtansine (T-DM1). This study aims to elucidate the mechanism of action of ADC-induced thrombocytopenia. ENPP3 expression in platelets and megakaryocytes (MK) was investigated and shown to be negative. The direct effect of AGS-16C3F on platelets was evaluated using platelet rich plasma following the expression of platelet activation markers. Effects of AGS-16C3F, T-DM1, and control ADCs on maturing megakaryocytes were evaluated in an system in which human hematopoietic stem cells (HSC) were differentiated into MKs. AGS-16C3F, like T-DM1, did not affect platelets directly, but inhibited MK differentiation by the activity of Cys-mcMMAF, its active metabolite. FcγRIIA did not appear to play an important role in ADC cytotoxicity to differentiating MKs. AGS-16C3F, cytotoxic to MKs, did not bind to FcγRIIA on MKs. Blocking the interaction of T-DM1 with FcγRIIA did not prevent the inhibition of MK differentiation and IgG1-mcMMAF was not as cytotoxic to MKs despite binding to FcγRIIA. Several lines of evidence suggest that internalization of AGS-16C3F into MKs is mediated by macropinocytosis. Macropinocytosis activity of differentiating HSCs correlated with cell sensitivity to AGS-16C3F. AGS-16C3F was colocalized with a macropinocytosis marker, dextran-Texas Red in differentiating MKs. Ethyl isopropyl amiloride (EIPA), a macropinocytosis inhibitor, blocked internalization of dextran-Texas Red and AGS-16C3F. These data support the notion that inhibition of MK differentiation via macropinocytosis-mediated internalization plays a role in ADC-induced thrombocytopenia..
AGS67E is an antibody drug conjugate (ADC) against CD37 conjugated to monomethyl auristatin E (MMAE). CD37 is expressed on normal WBCs, but is also highly expressed in NHL, CLL and AML (Pereira et al., 2015). A phase I study is currently evaluating the safety, PK and anti-cancer activity of AGS67E with or without growth factor (GF) in subjects with relapsed/refractory NHL. To assess CD37 expression on WBCs, binding of AGS67E, and potential pharmacodynamic effects, samples from subjects were collected at pre-dose, D2, D8, and D15 and analyzed by flow cytometry. CD37 expression on subject tumor samples was also evaluated by immunohistochemistry (IHC). Our results demonstrated that CD37 was highly expressed in tumor samples and that AGS67E binds to WBCs causing down-regulation of CD37, achieving saturation of binding at 24 hours post-treatment (earliest time measured) at or above 0.9 mg/kg. A dose-dependent decrease in the number of all cell types examined was observed with a nadir occurring at D8, with partial or full recovery at D15, except for neutrophils. NK and T cell counts appeared to be least impacted while neutrophils were most affected. B cell counts were extremely low pre-dose for some patients, presumably from prior therapies. In patients treated at 0.9 mg/kg and higher without GF, recovery of neutrophils was delayed beyond D15. At doses of 1.2 mg/kg and higher, use of GF resulted in a significant recovery of neutrophils by D15. The extent of cell count decreases did not correlate to the proportion of cells expressing CD37. For example, decreases in NK cells, monocytes, and, in some cases, T cells, were much greater than the proportion of cells expressing CD37. Furthermore, mature WBCs are unlikely to be affected by AGS67E. This raises the possibility that the main effect of AGS67E may be on rapidly growing precursor cells and that cells with low, or no, CD37 expression may be impacted by the membrane permeable MMAE through a by-stander effect. The effect of AGS67E on neutrophils was investigated in an in vitro assay where hematopoietic stem cells were differentiated into neutrophils. Using this method, we showed that when AGS67C antibody was conjugated to a non-cleavable, membrane impermeable auristatin (mcMMAF) less cytotoxicity to differentiating neutrophils was observed compared to AGS67E. Previously, we have shown that neutrophils secrete proteases that can liberate MMAE from ADCs (Zhao et al, 2016). These results suggest that AGS67E contributes to neutropenia through a by-stander effect, in addition to the CD37-mediated internalization of the ADC. In conclusion, the results showed that AGS67E bound to its target CD37, modulated its expression, achieved saturation of binding at doses at or above 0.9 mg/kg, and reversibly depleted WBCs, with the exception of neutrophils for which GF administration appeared to significantly improve recovery rate. Citation Format: Sher Karki, Hector Avina, Jacqueline Lackey, Ahmed Sawas, Kerry J. Savage, Raymond Perez, Ranjana Advani, Jasmine Zain, Owen A. O'Connor, Sara Gulesserian, Hui Zhao, Peng Yang, Karen Morrison, Leonard Reyno, Fernando Donate. Evaluation of CD37 expression and binding of AGS67E, an antibody-drug conjugate (ADC) against CD37, on white blood cells (WBCs) collected from phase I non-Hodgkin lymphoma (NHL) patients [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2709. doi:10.1158/1538-7445.AM2017-2709
<p>Fig. S1. Structure of AGS-16C3F; Figure S2. ENPP3 was not expressed in megakaryocytes; Figure S3. AGS-16C3F did not affect platelet activation; Figure S4. Maturing MKs did not express ENPP3; Figure S5. Fc blocker inhibited FcγRIIA pathway in tumor cells; Table S1. Information about ADCs used in this study; Table S2. Quantitative binding assessment of Fc blockers to human FcγRs</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.