This Article details the development
of the iron-catalyzed conversion
of olefins to radicals and their subsequent use in the construction
of C–C bonds. Optimization of a reductive diene cyclization
led to the development of an intermolecular cross-coupling of electronically-differentiated
donor and acceptor olefins. Although the substitution on the donor
olefins was initially limited to alkyl and aryl groups, additional
efforts culminated in the expansion of the scope of the substitution
to various heteroatom-based functionalities, providing a unified olefin
reactivity. A vinyl sulfone acceptor olefin was developed, which allowed
for the efficient synthesis of sulfone adducts that could be used
as branch points for further diversification. Moreover, this reactivity
was extended into an olefin-based Minisci reaction to functionalize
heterocyclic scaffolds. Finally, mechanistic studies resulted in a
more thorough understanding of the reaction, giving rise to the development
of a more efficient second-generation set of olefin cross-coupling
conditions.
To detect the incidence and persistence of potential chromosome damage induced by iodine-131 therapy, we applied the cytokinesis-block micronucleus assay to peripheral blood lymphocytes from hyperthyroidism and thyroid cancer patients treated with 131I. Two groups of patients were evaluated in a longitudinal study; one group was composed of 47 hyperthyroid patients and the other of 39 thyroid cancer patients. In the hyperthyroidism group, the micronuclei frequency was determined before 131I therapy and 1 week, 1 month and 3 months after it. Furthermore, an additional sample was taken from a subgroup of 17 hyperthyroidism patients 6 months after treatment. In the thyroid cancer group, the analysis was also conducted over time, and four samples were studied: before treatment and 1 week, 6 months and 1 year later. Simultaneously, a cross-sectional study was performed with 70 control subjects and 54 thyroid cancer patients who had received the last therapeutic dose 1-6 years before the present study. In the hyperthyroidism group a significant increase in the micronuclei average was found over time. In the sample obtained 6 months after therapy, the micronuclei mean frequency was practically the same as in the sample taken 3 months before. In the thyroid cancer group a twofold increase in the frequency of micronuclei was seen 1 week after therapy. Although this value decreased across time, the micronuclei frequency obtained 1 year after 131I therapy remained higher than the value found before it. Concerning the data from the cross-sectional study, a significant increase in the frequency of micronuclei was detected in the subgroup of thyroid cancer patients treated between 1 and 3 years before the current study. These results indicate that exposure to 131I therapy induces chromosome damage in peripheral lymphocytes and that the cytokinesis-block micronucleus assay is sensitive enough to detect the genetic damage by exposure to sufficiently high levels of radiation from internal radioactive sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.