Abstract. The Internet of Things plays a central role in the foreseen shift of the Internet to the Future Internet, as it incarnates the drastic expansion of the Internet network with non-classical ICT devices. It will further be a major source of evolution of usage, due to the penetration in the user's life. As such, we envision that the Internet of Things will cooperate with the Internet of Services to provide users with services that are aware of their surrounding environment. The supporting service-oriented middleware shall then abstract the functionalities of Things as services as well as provide the needed interoperability and flexibility, through a loose coupling of components and composition of services. Still, core functionalities of the middleware, namely service discovery and composition, need to be revisited to meet the challenges posed by the Internet of Things. Challenges in particular relate to the ultra large scale, heterogeneity and dynamics of the Internet of Things that are far beyond the ones of today's Internet of Services. In addition, new challenges also arise, pertaining to the physical-world aspect that is central to the IoT. In this paper, we survey the major challenges posed to service-oriented middleware towards sustaining a service-based Internet of Things, together with related state of the art. We then concentrate on the specific solutions that we are investigating within the INRIA ARLES project team as part of the CHOReOS European project, discussing new approaches to overcome the challenges particular to the Internet of Things.
Service-oriented computing is now acknowledged as a central paradigm for Internet computing, supported by tremendous research and technology development over the last 10 years. However, the evolution of the Internet, and in particular, the latest Future Internet vision, challenges the paradigm. Indeed, service-oriented computing has to face the ultra large scale and heterogeneity of the Future Internet, which are orders of magnitude higher than those of today's service-oriented systems. This article aims at contributing to this objective by identifying the key research directions to be followed in light of the latest state of the art. This article more specifically focuses on research challenges for service-oriented middleware design, therefore, investigating service description, discovery, access, and composition in the Future Internet of services.
Challenges the Internet of Things (IoT) is facing are directly inherited from today's Internet. However, they are amplified by the anticipated large scale deployments of devices and services, information flow and involved users in the IoT. Challenges are many and we focus on addressing those related to scalability, heterogeneity of IoT components, and the highly dynamic and unknown nature of the network topology. In this paper, we give an overview of a service-oriented middleware solution that addresses those challenges using semantic technologies to provide interoperability and flexibility. We especially focus on modeling a set of ontologies that describe devices and their functionalities and thoroughly model the domain of physics. The physics domain is indeed at the core of the IoT, as it allows the approximation and estimation of functionalities usually provided by things. Those functionalities will be deployed as services on appropriate devices through our middleware.
Abstract-One of the main benefits of mobile participatory sensing becoming a reality is the increased knowledge it will provide about the real world while relying on a large number of mobile devices. Those devices can host different types of sensors incorporated in every aspect of our lives. However, given the increasing number of capable mobile devices, any participatory sensing approach should be, first and foremost, scalable. To address this challenge, we present an approach to decrease the participation of (sensing) devices in a manner that does not compromise the accuracy of the real-world information while increasing the efficiency of the overall system.To reduce the number of the devices involved, we present a probabilistic registration approach, based on a realistic human mobility model, that allows devices to decide whether or not to register their sensing services depending on the probability of other, equivalent devices being present at the locations of their expected path. We present the design and implementation of a registration middleware based on our techniques, using which mobile devices can base their registration decision. Through experiments performed on real and simulated datasets, we show that our approach scales, while not sacrificing significant amounts of sensing coverage.
In this paper, we introduce MobIoT, a service-oriented middleware that enables large-scale mobile participatory sensing. Scalability is achieved by limiting the participation of redundant sensing devices. Precisely, MobIoT allows a new device to register its services only if it increases the sensing coverage of a physical attribute, along its expected path, for the set of registered devices. We present the design and implementation of MobIoT, which mobile devices use to determine their registration decision and become accessible for their services. Through experiments performed on real datasets, we show that our solution scales, while meeting sensing coverage requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.