A quadratic invariant operator for general time-dependent three coupled nano-optomechanical oscillators is investigated. We show that the invariant operator that we have established satisfies the Liouville-von Neumann equation and coincides with its classical counterpart. To diagonalize the invariant, we carry out a unitary transformation of it at first. From such a transformation, the quantal invariant operator reduces to an equal, but a simple one which corresponds to three coupled oscillators with time-dependent frequencies and unit masses. Finally, we diagonalize the matrix representation of the transformed invariant by using a unitary matrix. The diagonalized invariant is just the same as the Hamiltonian of three simple oscillators. Thanks to such a diagonalization, we can analyze various dynamical properties of the nano-optomechanical system. Quantum characteristics of the system are investigated as an example, by utilizing the diagonalized invariant. We derive not only the eigenfunctions of the invariant operator, but also the wave functions in the Fock state.
Quantum dynamical properties of a general time-dependent coupled oscillator are investigated based on the theory of two-dimensional (2D) dynamical invariants. The quantum dynamical invariant of the system satisfies the Liouville–von Neumann equation and it coincides with its classical counterpart. The mathematical formula of this invariant involves a cross term which couples the two oscillators mutually. However, we show that, by introducing two pairs of annihilation and creation operators, it is possible to uncouple the original invariant operator so that it becomes the one that describes two independent subsystems. The eigenvalue problem of this decoupled quantum invariant can be solved by using a unitary transformation approach. Through this procedure, we eventually obtain the eigenfunctions of the invariant operator and the wave functions of the system in the Fock state. The wave functions that we have developed are necessary in studying the basic quantum characteristics of the system. In order to show the validity of our theory, we apply our consequences to the derivation of the fluctuations of canonical variables and the uncertainty products for a particular 2D oscillatory system whose masses are exponentially increasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.