In this work, we report a simple fabrication method for microelectrodes on a polymethylmethacrylate substrate, using a low-cost laser platform based on a CD-DVD unit for direct rapid-prototyping. We used this laser microfabrication technique to etch any desired design on polymethylmethacrylate substrates to produce microchannels with controlled geometry, with a highly repeatable micron-scale resolution. Those shallow microchannels were then filled with a conductive paste of material of our choice that was converted into microelectrodes of desired shapes and geometries after drying. To validate our process, different geometries, sizes and materials were used as electrodes, and then tested for amperometry and impedance measurements. Development of these microelectrodes is motivated by their potential application in sensors and biosensors, such as glucose and cell counting, as demonstrated in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.