Ca2þ signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with submicromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca 2þ -activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOHterminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca 2þ activation in cardiac muscle cells.
Legume-based forage plant mixtures are known to increase biomass production over the mixture species grown as pure stands (overyielding), which has partly been attributed to enhanced nitrogen availability by legumes. However, the relative importance of underlying processes of these positive diversity effects and their drivers are not fully understood. Here we assessed if outcome and causes of diversity effects depend on the legume-species genetic identity. Over five years, we cultivated different white clover (Trifolium repens) populations, a grass and forb species in pure stands and clover-based mixtures and recorded biomass yield. Complementarity and selection effects of mixtures and relative yields of mixture species were calculated based on both unfertilized and nitrogen-fertilized non-leguminous pure stands. Results showed that the clover population altered the overall strength of diversity effects as well as the direction and magnitude of their temporal trends, at least for the grass component of mixtures. Differences in diversity effects between clover populations diminished when fertilized instead of unfertilized non-leguminous pure stands were considered. Hence, a part of these differences likely results from dissimilar effects of clover populations on nitrogen availability. The findings reveal the possibility to improve overyielding of legume-based forage plant mixtures by decisions on legume-species genetic identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.