The exploitation intensity has extensively amplified since, and the human population became much reliant on environmental, economic and social benefits sustained by marine ecosystems (Konar et al., 2019). Increased fishing pressure has been ensuring livelihood to a quarter of a billion people and has contributed substantially to the global economy (Teh & Sumaila, 2013). Yet, applied fishing methods have not been sustainable. A majority of commercially fished stocks are considered overfished (FAO, 2020), and effective catch per unit of effort is decreasing despite that the size of the fishing fleet has doubled since the 1950s (Rousseau et al., 2019). The future could still be optimistic as the status of global fish stocks is not homogenous but rather considerably varying among fisheries and locations, demonstrating the influence of successful management strategies (Hilborn et al., 2021). The general trend
Stochastic environments shape life‐history traits and can promote selection for risk‐spreading strategies, such as bet‐hedging. Although the strategy has often been hypothesized to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in tracking fitness across generations. Here, we take a ‘proof of principle’ approach to explore whether the reproductive strategy of multiple‐batch spawning constitutes a bet‐hedging. We used Atlantic cod (Gadus morhua) as the study species and parameterized an eco‐evolutionary model, using empirical data on size‐related reproductive and survival traits. To evaluate the fitness benefits of multiple‐batch spawning (within a single breeding period), the mechanistic model separately simulated multiple‐batch and single‐batch spawning populations under temporally varying environments. We followed the arithmetic and geometric mean fitness associated with both strategies and quantified the mean changes in fitness under several environmental stochasticity levels. We found that, by spreading the environmental risk among batches, multiple‐batch spawning increases fitness under fluctuating environmental conditions. The multiple‐batch spawning trait is, thus, advantageous and acts as a bet‐hedging strategy when the environment is exceptionally unpredictable. Our research identifies an analytically flexible, stochastic, life‐history modelling approach to explore the fitness consequences of a risk‐spreading strategy and elucidates the importance of evolutionary applications to life‐history diversity.
Dams alter the natural dynamics of river inflow, disrupting biological processes in downstream ecosystems, as observed in the Guadiana estuary (SW Iberian Peninsula, Europe). Here, significant interannual fluctuations in the densities of jellyfish occur during summer, likely due to changes in winter river discharge. Therefore, this study aimed to quantify the relationship between winter river inflow and the abundance of jellyfish in the Guadiana estuary. In addition, the budding and growth of Aurelia aurita polyps, one of the bloom-forming species present in the estuary, were determined at different combinations of constant temperature and salinity. The response of polyps and ephyrae to short-term, low-salinity pulses was also quantified. Maximum winter river discharge and maximum abundance of estuarine medusa (bloom indicator) showed a significant negative correlation. Under constant conditions, polyps showed increased mortality when water temperature was higher than 23°C and salinity was lower than 23, and died when exposed to a short-term, low-salinity pulse (≤3). After exposure to freshets, polyp budding and feeding rates decreased by 69% and 32%, respectively, when salinity reached values as low as 10. Ephyrae died when salinity was lower than 10, and feeding rates decreased by 88% when salinity was 17, compared with full marine conditions. In conclusion, winter freshwater discharge may regulate the strength of estuarine jellyfish blooms, impairing the survival or condition of polyps and ephyrae during late winter or early spring. River basin managers should consider the prescription of freshets to prevent jellyfish blooms from disrupting ecosystem services (e.g. fisheries, tourism).
Scientists have warned decision-makers about the severe consequences of the global environmental crisis since the 1970s. Yet ecological degradation continues and little has been done to address climate change. We investigated early-career conservation researchers' (ECR) perspectives on, and prioritization
Can the advantage of risk-managing life-history strategies become a disadvantage under human-induced evolution? Organisms have adapted to the variability and uncertainty of environmental conditions with a vast diversity of life-history strategies. One such evolved strategy is multiple-batch spawning, a spawning strategy common to long-lived fishes that ‘hedge their bets' by distributing the risk to their offspring on a temporal and spatial scale. The fitness benefits of this spawning strategy increase with female body size, the very trait that size-selective fishing targets. By applying an empirically and theoretically motivated eco-evolutionary mechanistic model that was parameterized for Atlantic cod ( Gadus morhua ), we explored how fishing intensity may alter the life-history traits and fitness of fishes that are multiple-batch spawners. Our main findings are twofold; first, the risk-spreading strategy of multiple-batch spawning is not effective against fisheries selection, because the fisheries selection favours smaller fish with a lower risk-spreading effect; and second, the ecological recovery in population size does not secure evolutionary recovery in the population size structure. The beneficial risk-spreading mechanism of the batch spawning strategy highlights the importance of recovery in the size structure of overfished stocks, from which a full recovery in the population size can follow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.