We describe the nonnatural antimicrobial peptide KKIRVRLSA (M33) and its capacity to neutralize LPS-induced cytokine release, preventing septic shock in animals infected with bacterial species of clinical interest. M33 showed strong resistance to proteolytic degradation when synthesized in tetrabranched form with 4 peptides linked by a lysine core, making it suitable for use in vivo. HPLC and mass spectrometry demonstrated its stability in serum beyond 24 h. M33 was found to be very selective for gram-negative bacteria. Minimal inhibitory concentration (MIC) ranged from 0.3 to 3 muM for multidrug resistant clinical isolates of several pathogenic species, including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. M33 neutralized LPS derived from P. aeruginosa and K. pneumoniae, and prevented TNF-alpha release from LPS-activated macrophages, with an EC(50) of 3.8e-8 M and 2.8e-7 M, respectively, as detected by sandwich ELISA. M33 activity was also tested in sepsis animal models. It averted septic shock symptoms due to Escherichia coli and P. aeruginosa in doses compatible with clinical use (5-25 mg/kg). These properties make tetrabranched M33 peptide a good candidate for the development of a new antibacterial drug.-Pini, A., Falciani, C., Mantengoli, E., Bindi, S., Brunetti, J., Iozzi, S., Rossolini, G. M., Bracci, L. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo.
Background. DKK1 antagonizes canonical Wnt signalling through high-affinity binding to LRP5/6, an essential component of the Wnt receptor complex responsible for mediating downstream canonical Wnt signalling. DKK1 overexpression is known for its pathological implications in osteoporosis, cancer, and neurodegeneration, suggesting the interaction with LRP5/6 as a potential therapeutic target. Results. We show that the small-molecule NCI8642 can efficiently displace DKK1 from LRP6 and block DKK1 inhibitory activity on canonical Wnt signalling, as shown in binding and cellular assays, respectively. We further characterize NCI8642 binding activity on LRP6 by Surface Plasmon Resonance (SPR) technology. Conclusions. This study demonstrates that the DKK1-LRP6 interaction can be the target of small molecules and unlocks the possibility of new therapeutic tools for diseases associated with DKK1 dysregulation.
The TWEAK-Fn14 pathway is upregulated in models of inflammation, autoimmune diseases, and cancer. Both TWEAK and Fn14 show increased expression also in the CNS in response to different stimuli, particularly astrocytes, microglia, and neurons, leading to activation of NF-κB and release of proinflammatory cytokines. Although neutralizing antibodies against these proteins have been shown to have therapeutic efficacy in animal models of inflammation, no small-molecule therapeutics are yet available. Here, we describe the development of a novel homogeneous time-resolved fluorescence (HTRF)-based screening assay together with several counterassays for the identification of small-molecule inhibitors of this protein-protein interaction. Recombinant HIS-TWEAK and Fn14-Fc proteins as well as FLAG-TWEAK and Fn14-FLAG proteins and an anti-Fn14 antibody were used to establish and validate these assays and to screen a library of 60 000 compounds. Two HTRF counterassays with unrelated proteins in the same assay format, an antiaggregation assay and a redox assay, were applied to filter out potential false-positive compounds. The novel assay and associated screening cascade should be useful for the discovery of small-molecule inhibitors of the TWEAK-Fn14 protein interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.