Since 1906, when Dr. Alois Alzheimer first described in a patient “a peculiar severe disease process of the cerebral cortex”, people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60–70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer’s disease is needed.
Background Alzheimer disease (AD) is a progressive neurodegenerative disorder affecting the elderly with a prevalence of 7.1% in women and 3.3% in men. Sex-related patterns have been reported in prognosis, biomarker status, and risk factors. Despite this, the interaction of sex has received limited attention, with AD trials persistently recruiting lower numbers of women than the population distribution and a lack of information on the sex-disaggregated effects of anti-dementia therapies. This is the first study aiming to identify the role of sex in the selection for screening in AD clinical trials. Methods This cross-sectional study provides a comprehensive analysis of screening eligibility according to a set of pre-selection criteria currently applied at Fundació ACE memory clinic for a more efficient trial screening process. A cohort of 6667 women and 2926 men diagnosed with AD dementia (55%) or mild cognitive impairment (45%) was analyzed. We also assessed the frequencies of men and women effectively screened for trial enrolment over a period of 10 years. Additionally, data from AddNeuroMed study was used to explore trends in eligibility based on the education criteria. Results Women showed a significantly lower chance of being eligible for screening than men (OR = 1.26; p < 0.01). This imbalance was confirmed by a lower frequency of women screened for enrolment compared to the study population (63.0% vs. 69.5%). Education was revealed as the key criterion contributing to this unbalance, with men showing over twice the chance of being screened compared with women (OR = 2.25, p < 0.01). Education-based differences were greater in earlier born patients, but the gap narrowed and achieved balance with increasing year of birth. This observation was replicated using data from other European populations included in AddNeuroMed study. Comorbidity was the most limiting criterion with sex differences in frequencies and significant discrimination against the selection of men (OR = 0.86, p < 0.01). Conclusions The large number of low-educated elderly women with AD demands for a sex-focused approach in clinical research. New assessment tools insensitive to education level should be developed to enable a proportional representation of women. Although this gender education gap is mostly inexistent in developed countries, economic or cultural factors may lead to different scenarios in other regions. Overlooking the impact of sex may lead to a handicap in AD research with a direct adverse impact on women’s health.
Background: The COVID-19 pandemic has brought great disruption to health systems worldwide. This affected ongoing clinical research, particularly among those most vulnerable to the pandemic, like dementia patients. Fundació ACE is a research center and memory clinic based in Barcelona, Spain, one of the hardest-hit countries. Objective: To describe the ad-hoc strategic plan developed to cope with this crisis and to share its outcomes. Methods: We describe participants’ clinical and demographic features. Additionally, we explain our strategic plan aimed at minimizing the impact on clinical trial research activities, which included SARS-CoV-2 RT-PCR and IgG serological tests to all participants and personnel. The outcomes of the plan are described in terms of observed safety events and drop-outs during the study period. Results: A total of 130 patients were participating in 16 active clinical trials in Fundació ACE when the lockdown was established. During the confinement, we performed 1018 calls to the participants, which led to identify adverse events in 26 and COVID-19 symptoms in 6. A total of 83 patients (64%) could restart on-site visits as early as May 11, 2020. All SARS-CoV-2 RT-PCR diagnostic tests performed before on-site visits were negative and only three IgG serological tests were positive. Throughout the study period, we only observed one drop-out, due to an adverse event unrelated to COVID-19. Discussion: The plan implemented by Fundació ACE was able to preserve safety and integrity of ongoing clinical trials. We must use the lessons learned from the pandemic and design crisis-proof protocols for clinical trials.
ImportanceAmyloid positron emission tomography (PET) allows the direct assessment of amyloid deposition, one of the main hallmarks of Alzheimer disease. However, this technique is currently not widely reimbursed because of the lack of appropriately designed studies demonstrating its clinical effect.ObjectiveTo assess the clinical effect of amyloid PET in memory clinic patients.Design, Setting, and ParticipantsThe AMYPAD-DPMS is a prospective randomized clinical trial in 8 European memory clinics. Participants were allocated (using a minimization method) to 3 study groups based on the performance of amyloid PET: arm 1, early in the diagnostic workup (within 1 month); arm 2, late in the diagnostic workup (after a mean [SD] 8 [2] months); or arm 3, if and when the managing physician chose. Participants were patients with subjective cognitive decline plus (SCD+; SCD plus clinical features increasing the likelihood of preclinical Alzheimer disease), mild cognitive impairment (MCI), or dementia; they were assessed at baseline and after 3 months. Recruitment took place between April 16, 2018, and October 30, 2020. Data analysis was performed from July 2022 to January 2023.InterventionAmyloid PET.Main Outcome and MeasureThe main outcome was the difference between arm 1 and arm 2 in the proportion of participants receiving an etiological diagnosis with a very high confidence (ie, ≥90% on a 50%-100% visual numeric scale) after 3 months.ResultsA total of 844 participants were screened, and 840 were enrolled (291 in arm 1, 271 in arm 2, 278 in arm 3). Baseline and 3-month visit data were available for 272 participants in arm 1 and 260 in arm 2 (median [IQR] age: 71 [65-77] and 71 [65-77] years; 150/272 male [55%] and 135/260 male [52%]; 122/272 female [45%] and 125/260 female [48%]; median [IQR] education: 12 [10-15] and 13 [10-16] years, respectively). After 3 months, 109 of 272 participants (40%) in arm 1 had a diagnosis with very high confidence vs 30 of 260 (11%) in arm 2 (P &lt; .001). This was consistent across cognitive stages (SCD+: 25/84 [30%] vs 5/78 [6%]; P &lt; .001; MCI: 45/108 [42%] vs 9/102 [9%]; P &lt; .001; dementia: 39/80 [49%] vs 16/80 [20%]; P &lt; .001).Conclusion and RelevanceIn this study, early amyloid PET allowed memory clinic patients to receive an etiological diagnosis with very high confidence after only 3 months compared with patients who had not undergone amyloid PET. These findings support the implementation of amyloid PET early in the diagnostic workup of memory clinic patients.Trial RegistrationEudraCT Number: 2017-002527-21
Although beta-amyloid (Aβ) and phosphorylated tau remain the preferred targets for disease-modifying treatments (DMT) against Alzheimer’s disease (AD), part of the pathophysiological mechanisms of cognitive impairment are related to neuroinflammation and oxidative stress. In mild cognitive impairment (MCI), a prodromal stage of AD and other neurodegenerative conditions, the joint appearance of inflammation, oxidative stress, and metabolic alterations are the common pathways of neurotoxicity and neurodegeneration. The standardized extract of Ginkgo biloba EGb 761 interferes with the pathogenic mechanisms involved in both the development of cognitive impairment due to AD and that of vascular origin. The primary objective of this study is to compare changes in the levels of blood markers of inflammation and oxidative stress after treatment with EGb 761 in a cohort of 100 patients with MCI. In addition, we aim to assess changes in these blood markers during an additional 12-month extension phase in which patients in the control group will also receive EGb 761 and patients in the active group will extend their treatment duration. Secondary objectives include comparing changes in neuropsychiatric and cognitive test scores between the baseline (v0) and 12-month visits (v2). This study is a Phase IV, single-center, randomized, open-label, parallel-group clinical trial consisting of the 12-month follow-up of a cohort of participants with MCI [Global Deterioration Scale (GDS) = 3] and an extension with an additional 12-month follow-up. During the first 12 months, participants will be randomized into two arms: in one arm, patients will receive 1 daily tablet of EGb 761 240 mg orally (study group, n = 50), while in the other arm, patients will not receive EGb 761 and will undergo the same assessments as the treated group (control group, n = 50). After the first 12 months of the study, patients in the EGb 761-treated group will continue treatment, and patients in the control group will be offered one EGb 761 240 mg tablet per day orally. All participants will be monitored for an additional 12 months. A battery of blood markers of inflammation and oxidative stress will be quantified at v0, v1, v2, v3, and v4. The Olink Proteomics panel of inflammation markers (https://www.olink.com/products/inflammation/) will be used to evaluate 92 proteins associated with inflammatory diseases and related biological processes. The second panel measures 92 proteins involved in neurological processes. At v0, v2, and v4, neuropsychological and neurological evaluations will be conducted in addition to vital signs and anthropometric studies using a body composition monitor with bioimpedance technology (Tanita). Sixty percent of the 100 MCI patients recruited were women. The mean age was 73.1 years, and the mean time between symptom onset and MCI diagnosis was 2.9 years. The mean Mini-Mental State Examination (MMSE) score was 26.7. Depressive and anxiety disorders, as well as vascular risk factors, were the most frequent comorbidities among the cohort. The study is still ongoing, and results for the first year of treatment (v0, v1, v2) are expected by 2023. Individuals with MCI have an elevated risk of developing dementia. EGb 761 is used worldwide for the symptomatic treatment of cognitive disorders due to its neuroprotective effects. In experimental models and clinical observational studies, EGb 761 has shown strong antioxidant and anti-inflammatory activity. As a result, this study has been proposed to evaluate the antioxidant and anti-inflammatory effects on plasma markers and their potential clinical correlation with the progression of cognitive decline in patients with MCI.Trial registration: Registro Español de estudios clínicos (REec) number 2020-003776-41, ClinicalTrials.gov Identifier: NCT05594355.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.