Traditional bacterial fermentation techniques used to manufacture plasmid are time-consuming, expensive, and inherently unstable. The production of sufficient GMP grade material thus imposes a major bottleneck on industrial-scale manufacturing of lentiviral vectors (LVV). Touchlight’s linear doggybone DNA (dbDNATM) is an enzymatically amplified DNA vector produced with exceptional speed through an in vitro dual enzyme process, enabling industrial-scale manufacturing of GMP material in a fraction of the time required for plasmid. We have previously shown that dbDNATM can be used to produce functional LVV; however, obtaining high LVV titres remained a challenge. Here, we aimed to demonstrate that dbDNATM could be optimised for the manufacture of high titre LVV. We found that dbDNATM displayed a unique transfection and expression profile in the context of LVV production, which necessitated the optimisation of DNA input and construct ratios. Furthermore, we demonstrate that efficient 3’ end processing of viral genomic RNA (vgRNA) derived from linear dbDNATM transfer vectors required the addition of a strong 3’ termination signal and downstream spacer sequence to enable efficient vgRNA packaging. Using these improved vector architectures along with optimised transfection conditions, we were able to produce a CAR19h28z LVV with equivalent infectious titres as achieved using plasmid, demonstrating that dbDNATM technology can provide a highly effective solution to the plasmid bottleneck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.