Fat-corrected R2* relaxometry from multi-echo gradient-recalled echo sequences (mGRE) could represent an efficient approach for iron overload evaluation, but its use is limited by computational constraints. A new method for the fast generation of R2* and fat fractions (FF) maps from mGRE using a convolutional neural network (U-Net) and deep learning (DL) is presented. A U-Net for the calculation of pancreatic R2* and FF maps was trained with 576 mGRE abdominal images and compared to conventional fat-corrected relaxometry. The U-Net was effectively trained and provided R2* and FF maps visually comparable to conventional methods. Predicted pancreatic R2* and FF values were well correlated with the conventional model. Estimated and ground truth mean R2* values were not significantly different (43.65 ± 21.89 vs. 43.77 ± 19.81 ms, p = 0.692, intraclass correlation coefficient-ICC = 0.9938, coefficient of variation-CoV = 5.3%), while estimated FF values were slightly higher in respect to ground truth values (27.8 ± 16.87 vs. 25.67 ± 15.43 %, p < 0.0001, ICC = 0.986, CoV = 10.1%). Deep learning utilizing the U-Net is a feasible method for pancreatic MR fat-corrected relaxometry. A trained U-Net can be efficiently used for MR fat-corrected relaxometry, providing results comparable to conventional model-based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.