Persistent fibrosis in multiple organs is the hallmark of systemic sclerosis (SSc). Recent genetic and genomic studies implicate TLRs and their damage-associated molecular pattern (DAMP) endogenous ligands in fibrosis. To test the hypothesis that TLR4 and its coreceptor myeloid differentiation 2 (MD2) drive fibrosis persistence, we measured MD2/TLR4 signaling in tissues from patients with fibrotic SSc, and we examined the impact of MD2 targeting using a potentially novel small molecule. Levels of MD2 and TLR4, and a TLR4-responsive gene signature, were enhanced in SSc skin biopsies. We developed a small molecule that selectively blocks MD2, which is uniquely required for TLR4 signaling. Targeting MD2/TLR4 abrogated inducible and constitutive myofibroblast transformation and matrix remodeling in fibroblast monolayers, as well as in 3-D scleroderma skin equivalents and human skin explants. Moreover, the selective TLR4 inhibitor prevented organ fibrosis in several preclinical disease models and mouse strains, and it reversed preexisting fibrosis. Fibroblast-specific deletion of TLR4 in mice afforded substantial protection from skin and lung fibrosis. By comparing experimentally generated fibroblast TLR4 gene signatures with SSc skin biopsy gene expression datasets, we identified a subset of SSc patients displaying an activated TLR4 signature. Together, results from these human and mouse studies implicate MD2/TLR4-dependent fibroblast activation as a key driver of persistent organ fibrosis. The results suggest that SSc patients with high TLR4 activity might show optimal therapeutic response to selective inhibitors of MD2/TLR4 complex formation.
A series of novel, saccharin-based
antagonists have been identified
for the interferon signaling pathway. Through in vitro high-throughput
screening with the Colorado Center for Drug Discovery (C2D2) Pilot
Library, we identified hit compound 1, which was the
basis for extensive structure–activity relationship studies.
Our efforts produced a lead anti-inflammatory compound, tert-butyl N-(furan-2-ylmethyl)-N-{4-[(1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothiazol-2-yl)methyl]benzoyl}carbamate CU-CPD103 (103), as a potent inhibitor using an established nitric oxide
(NO) signaling assay. With further studies of its inhibitory mechanisms,
we demonstrated that 103 carries out this inhibition
through the JAK/STAT1 pathway, providing a drug-like small molecule
inflammation suppressant for possible therapeutic uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.