The effects on glucose homeostasis of eleven plants used as traditional treatments for diabetes mellitus were evaluated in normal and streptozotocin diabetic mice. Dried leaves of agrimony (Agrimonia eupatoria), alfalfa (Medicago sativa), blackberry (Rubus fructicosus), celandine (Chelidonium majus), eucalyptus (Eucalyptus globulus), lady's mantle (Alchemilla vulgaris), and lily of the valley (Convallaria majalis); seeds of coriander (Coriandrum sativum); dried berries of juniper (Juniperus communis); bulbs of garlic (Allium sativum) and roots of liquorice (Glycyrhizza glabra) were studied. Each plant material was supplied in the diet (6.25% by weight) and some plants were additionally supplied as decoctions or infusions (1 g/400 ml) in place of drinking water to coincide with the traditional method of preparation. Food and fluid intake, body weight gain, plasma glucose and insulin concentrations in normal mice were not altered by 12 days of treatment with any of the plants. After administration of streptozotocin (200 mg/kg i.p.) on day 12 the development of hyperphagia, polydipsia, body weight loss, hyperglycaemia and hypoinsulinaemia were not affected by blackberry, celandine, lady's mantle or lily of the valley. Garlic and liquorice reduced the hyperphagia and polydipsia but did not significantly alter the hyperglycaemia or hypoinsulinaemia. Treatment with agrimony, alfalfa, coriander, eucalyptus and juniper reduced the level of hyperglycaemia during the development of streptozotocin diabetes. This was associated with reduced polydipsia (except coriander) and a reduced rate of body weight loss (except agrimony). Alfalfa initially countered the hypoinsulinaemic effect of streptozotocin, but the other treatments did not affect the fall in plasma insulin. The results suggest that certain traditional plant treatments for diabetes, namely agrimony, alfalfa, coriander, eucalyptus and juniper, can retard the development of streptozotocin diabetes in mice.
A novel insulin-secreting cell line (BRIN-BD11) was established after electrofusion of RINm5F cells with New England Deaconess Hospital rat pancreatic islet cells. Wells of cell fusion mixture with insulin output 5-10 times greater than parent RINm5F cells were subcultured with eventual establishment of clones, including BRIN-BD11. Morphological studies established that these cells grow as monolayers with epithelioid characteristics, maintaining stability in tissue culture for > 50 passages. Culture of these cells for 24 h at 5.6-33.3 mmol/l glucose revealed a 1.8- to 2.0-fold increase of insulin output compared with 1.4 mmol/l glucose. Dynamic insulin release was recorded in response to 16.7 mmol/l glucose, resulting in a rapid threefold insulin secretory peak followed by a sustained output slightly above basal. In acute 20-min tests, 4.2-16.7 mmol/l glucose evoked a stepwise two- to three-fold stimulation of insulin release. 3-Isobutyl-1-methylxanthine (1 mmol/l) served to increase basal and glucose-stimulated insulin release, shifting the threshold from 4.4 to 1.1 mmol/l glucose. Stimulation of insulin secretion with 16.7 mmol/l glucose was abolished by mannoheptulose or diazoxide (15 or 0.5 mmol/l). In contrast, glyceraldehyde (10 mmol/l) and 25 mmol/l K+ evoked 1.7- to 9.0-fold insulin responses. L-Alanine (10 mmol/l) evoked a twofold secretory response, which was potentiated 1.4-fold by increasing the Ca2+ concentration from 1.28 to 7.68 mmol/l. Forskolin (25 mumol/l) and phorbol 12-myristate 13-acetate (10 nmol/l) both increased insulin secretion in the presence of L-alanine (1.4- and 1.8-fold, respectively). Western blotting confirmed that BRIN-BD11 cells expressed the GLUT2 glucose transporter. This, coupled with a high glucokinase/hexokinase ratio in the cells, confirms an intact glucose sensing mechanism. High-performance liquid chromatography analysis demonstrated that insulin was the major product secreted under stimulatory conditions. Collectively, these data indicate that the BRIN-BD11 cell line represents an important stable glucose-responsive insulin-secreting beta-cell line for future studies.
The role of GIP in the pathogenesis of spontaneous syndromes of obesity-diabetes was examined in ob/ob mice of the Aston stock and db/db mice of the C57BL/KsJ background. Compared with lean controls, fed adult ob/ob and db/db mice, respectively, exhibited 1.8-fold and 2.1-fold increases in body weight, 1.8-fold and 2.8-fold elevations of plasma glucose, and 15.4-fold and 5.6-fold elevations of plasma insulin. As indicated by the relative magnitude of the hyperglycemia and hyperinsulinemia, db/db mice displayed a particularly severe form of diabetes. Plasma GIP concentrations of ob/ob and db/db mice were elevated 15.1-fold and 6.2-fold, respectively; the increments closely corresponded with the degrees of hyperinsulinemia. Small intestinal weight was increased 1.4-fold and 1.8-fold in ob/ob and db/db mice, respectively, but the intestinal GIP content expressed as microgram/g intestine or microgram/intestine was raised only in ob/ob mice (1.9-fold and 2.8-fold, respectively). Since glucose stimulation of insulin release is defective in both mutant strains, the results strongly implicate pathologically raised GIP concentrations in the hyperinsulinemia and related metabolic abnormalities of the obesity-diabetes syndromes. It is suggested that hypersecretion of GIP results in part from loss of normal feedback inhibition by endogenous insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.