Bacterial colonization of the lower respiratory tract is frequently seen in chronic obstructive pulmonary disease (COPD), and may cause exacerbations leading to disease progression. Antimicrobial peptides comprise an important part of innate lung immunity, and not least the cathelicidin human cationic antimicrobial protein-18/LL-37. Peptidylarginine deiminases (PADIs) post-translationally modify proteins by converting cationic peptidylarginine residues to neutral peptidylcitrulline. An increased presence of PADI2 and citrullinated proteins was demonstrated in the lungs of smokers. In this study, preformed PADI4, stored in granulocytes and extracellularly in the lumina of bronchi, was found in lung tissue of individuals suffering from COPD. In vitro, recombinant human PADI2 and PADI4 both caused a time- and dose-dependent citrullination of LL-37. The citrullination resulted in impaired antibacterial activity against Staphylococcus aureus, Streptococcus pneumoniae, and nontypable Haemophilus influenzae, but less so against Pseudomonas aeruginosa. Using artificial lipid bilayers, we observed discrete differences when comparing the disrupting activity of native and citrullinated LL-37, suggesting that differences in cell wall composition are important during interactions with whole bacteria. Furthermore, citrullinated LL-37 showed higher chemotactic activity against mononuclear leukocytes than did native LL-37, but was less efficient at neutralizing lipolysaccharide, and also in converting apoptotic neutrophils into a state of secondary necrosis. In addition, citrullinated LL-37 was more prone to degradation by proteases, whereas the V8 endopetidase of S. aureus cleaved the modified peptide at additional sites, compared with native LL-37. Together, these findings demonstrate novel mechanisms whereby the inflammation-dependent deiminases PADI2 and PADI4 can alter the activites of antibacterial polypeptides, affecting the course of inflammatory disorders such as COPD.
Epithelial linings serve as physical barriers and produce antimicrobial peptides (AMPs) to maintain host integrity. Examples are the bactericidal proteins midkine (MK) and BRAK/CXCL14 that are constitutively produced in the skin epidermal layer, where the anaerobic Gram-positive coccoid commensal Finegoldia magna resides. Consequently, this bacterium is likely to encounter both MK and BRAK/CXCL14, making these molecules possible threats to its habitat. In this study, we show that MK expression is upregulated during inflammation, concomitant with a strong downregulation of BRAK/CXCL14, resulting in changed antibacterial conditions. MK, BRAK/CXCL14, and the inflammation-dependent antimicrobial β-defensins human β-defensin (hBD)-2 and hBD-3 all showed bactericidal activity against both F. magna and the virulent pathogen Streptococcus pyogenes at similar concentrations. SufA, a released protease of F. magna, degraded MK and BRAK/CXCL14 but not hBD-2 nor hBD-3. Cleavage was seen at lysine and arginine residues, amino acids characteristic of AMPs. Intermediate SufA-degraded fragments of MK and BRAK/CXCL14 showed stronger bactericidal activity against S. pyogenes than F. magna, thus promoting survival of the latter. In contrast, the cysteine-protease SpeB of S. pyogenes rapidly degraded all AMPs investigated. The proteins FAF and SIC, released by F. magna and S. pyogenes, respectively, neutralized the antibacterial activity of MK and BRAK/CXCL14, protein FAF being the most efficient. Quantitation and colocalization by immunoelectron microscopy demonstrated significant levels and interactions of the molecules in in vivo and ex vivo samples. The findings reflect strategies used by a permanently residing commensal and a virulent pathogen, the latter operating during the limited time course of invasive disease.
Moraxella catarrhalis is a Gram-negative human mucosal commensal and pathogen. It is a common cause of exacerbation in chronic obstructive pulmonary disease (COPD). During the process of infection, host colonization correlates with recognition of host molecular patterns. Importantly, in COPD patients with compromised epithelial integrity the underlying extracellular matrix is exposed and provides potential adhesive targets. Collagen VI is a ubiquitous fibrillar component in the airway mucosa and has been attributed both adhesive and killing properties against Gram-positive bacteria. However, less is known regarding Gram-negative microorganisms. Therefore, in the present study, the interaction of M. catarrhalis with collagen VI was characterized. We found that collagen VI is upregulated in the airways of COPD patients and exposed upon epithelial desquamation. Ex vivo, we inoculated airway biopsies and fibroblasts from COPD patients with M. catarrhalis. The bacteria specifically adhered to collagen VI-containing matrix fibrils. In vitro, purified collagen VI microfibrils bound to bacterial surface structures. The primary adhesion target was mapped to the collagen VI α2-chain. Upon exposure to collagen VI, bacteria were killed by membrane destabilization in physiological conditions. These previously unknown properties of collagen VI provide novel insights into the extracellular matrix innate immunity by quickly entrapping and killing pathogen intruders.
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene result in impaired host defense during cystic fibrosis (CF), where Pseudomonas aeruginosa becomes a key pathogen. We investigated the expression pattern of the antibacterial growth factor midkine (MK) in CF and the possible interference with its activity by the altered airway microenvironment. High MK expression was found in CF lung tissue compared with control samples, involving epithelia of the large and small airways, alveoli, and cells of the submucosa (i.e., neutrophils and mast cells). In CF sputum, MK was present at 100-fold higher levels, but was also subject to increased degradation, compared with MK in sputum from healthy control subjects. MK exerted a bactericidal effect on P. aeruginosa, but increasing salt concentrations and low pH impaired this activity. Molecular modeling suggested that the effects of salt and pH were attributable to electrostatic screening and a charge-neutralization of the membrane, respectively. Both the neutrophil elastase and elastase of P. aeruginosa cleaved MK to smaller fragments, resulting in impaired bactericidal activity. Thus, MK is highly expressed in CF, but its bactericidal properties may be impaired by the altered microenvironment, as reflected by the in vitro conditions used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.