SummaryCell-cell communication regulates many important processes in bacteria. Gram-positive bacteria use peptide signals for communication, such as the Phr pentapeptides of Bacillus subtilis. The Phr pentapeptides are secreted with a pro domain that is cleaved to produce an active signalling peptide. To identify the protease(s) involved in production of the mature Phr signalling peptides, we developed assays for detecting cleavage of one of the B. subtilis Phr pentapeptides, CSF, from the proCSF precursor. Using both a cellular and a mass spectrometric approach, we determined that a sigma-H-regulated, secreted, serine protease(s) cleaved proCSF to CSF. Mutants lacking the three proteases that fit these criteria, subtilisin, Epr and Vpr, had a defect in CSF production. Purified subtilisin and Vpr were shown to be capable of processing proCSF as well as at least one other Phr peptide produced by B. subtilis, PhrA, but they were not able to process the PhrE signalling peptide of B. subtilis, indicating that there are probably other unidentified proteases involved in Phr peptide production. Subtilisin, Epr and Vpr are members of the subtilisin family of proteases that are widespread in bacteria, suggesting that many bacterial species may be capable of producing Phr signalling peptides.
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential-to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues ؊1 to ؊5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the ؊2, ؊3, or ؊4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the ؊4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.