Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15–20 wt%) and P(VDF-TrFE) (10–20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.
Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and kappa-carrageenan (k-CG) nanofibers as reinforcements in CPC was investigated. The CPC composite was fabricated by incorporating electrospun nanofibers in 1, 3, and 5% volume fractions. The morphology, mineralization, mechanical properties, setting time, injectability, cell adhesion, and mineralization of the CPC composites were analyzed. The results demonstrated that the addition of the nanofibers improved the CPC mixture, leading to an increase in compressive strength (14.8 ± 0.3 MPa compared to 8.1 ± 0.4 MPa of the unreinforced CPC). Similar improvements were seen in the bending strength and work fracture (WOF). The MC3T3-E1 cell culture experiments indicated that cells attached well to the surfaces of all cement samples and tended to join their adjacent cells. Additionally, the CPC composites showed higher cell mineralization after a culture period of 14 days, indicating that the SF/k-CG combination has potential for applications as a CPC reinforcement and bone cell regeneration promoter.
Tissue engineering and cell-based therapy approaches require artificial scaffolds as extracellular matrix (ECM) and three-dimensional (3D) environment for clinically relevant cells to attach, be metabolically active and proliferate. Moreover, these constructs must possess mechanical and physical-chemical properties matched with certain implantation site. If all the required conditions are met, a tissue-engineered construct is considered as functional and will regenerate or replace the damaged tissue after implantation. In this work, we give a short overview of so-called electrohydrodynamic approach (EHD), e.g. with an application of electric field, to fabricate nano- and microstructured porous polymeric networks. This includes the application of electrospinning (networks) and electrospraying (micro- and macrospheres) to produce scaffolds and semipermeable hydrogel structures as a basis for tissue engineering and cell-based therapies.
Magnetic nanoparticles (MNPs) have been used in several medical applications, including targeted hyperthermia, resonance tomography, diagnostic sensors, and localized drug delivery. Further applications of magnetic field manipulation through MNPs in tissue engineering have been described. The current study aims to develop tissue-engineered polymeric scaffolds with incorporated MNPs for applications that require stimulation of the tissues such as nerves, muscles, or heart. Electrospun scaffolds were obtained using 14%w/v polycaprolactone (PCL) in 2,2,2-Trifluoroethanol (TFE) at concentrations of 5% & 7.5%w/v of dispersed MNPs (iron oxide, Fe3O4, or cobalt iron oxide, CoFe2O4). Scaffolds were analyzed using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, uniaxial tensile testing, and cell seeding for biocompatibility. Human bone marrow mesenchymal stem cells (bmMSCs) were seeded on the scaffolds. Biocompatibility was assessed by metabolic activity with Resazurin reduction assay on day 1, 3, 7, 10. Cell-cell and cell-scaffold interactions were analyzed by SEM. Electrospun scaffolds containing MNPs showed a decrease in fiber diameter as compared to scaffolds of pure PCL. The maximum force increases with the inclusion of MNPs, with higher values revealed for iron oxide. The metabolic activity decreased with MNPs, especially for cobalt iron oxide at a higher concentration. On the other hand, the cells developed good cell-scaffold and cell-cell interactions, making the proposed scaffolds good prospects for potential use in tissue stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.