a b s t r a c tThis work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows.
Abstract:Short-term Quantitative Precipitation Forecasts (QPFs) can be achieved from numerical weather prediction (NWP) models or radar nowcasting, that is the extrapolation of the precipitation at a future time from consecutive radar scans. Hybrid forecasts obtained by merging rainfall forecasts from radar nowcasting and NWP models are potentially more skilful than either radar nowcasts or NWP rainfall forecasts alone. This paper provides an assessment of deterministic and probabilistic high-resolution QPFs achieved by implementing the Short-term Ensemble Prediction System developed by the UK Met Office. Both radar nowcasts and hybrid forecasts have been performed. The results show that the performance of both deterministic nowcasts and deterministic hybrid forecasts decreases with increasing rainfall intensity and spatial resolution. The results also show that the blending with the NWP forecasts improves the performance of the forecasting system. Probabilistic hybrid forecasts have been obtained through the modelling of a stochastic noise component to produce a number of equally likely ensemble members, and the comparative assessment of deterministic and probabilistic hybrid forecasts shows that the probabilistic forecasting system is characterised by a higher discrimination accuracy than the deterministic one.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd.
Short-term radar-based forecasts of precipitation can be achieved through the implementation of nowcasting models, essentially based on the rainfall extrapolation from a series of consecutive radar scans. Recent advances in this field include the development of hybrid models, aimed at merging the benefits of radar nowcasting and numerical weather prediction models, and probabilistic systems, aimed at addressing the sources of uncertainty in radar rainfall forecasts by means of ensembles. This paper provides an overview of radar nowcasting methods and approaches, with an emphasis on recent developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.