SignificanceMost nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We show that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C. Alongside aggressive fossil fuel emissions reductions, NCS offer a powerful set of options for nations to deliver on the Paris Climate Agreement while improving soil productivity, cleaning our air and water, and maintaining biodiversity.
U.S. land management can contribute 1.2 Pg CO2e year−1 of greenhouse gas mitigation, 76% of which costs USD 50 Mg CO2e−1 or less.
Regrowing natural forests is a prominent natural climate solution, but accurate assessments of its potential are limited by uncertainty and variability around carbon accumulation rates. To assess why and where rates differ, we compiled 13,112 georeferenced measurements of carbon accumulation. Climate explained variation in rates better than land use history, so we combined field data with 66 environmental covariate layers to create a global, 1-km resolution map of potential aboveground carbon accumulation rates for the first 30 years of forest regrowth. Our results indicate that on average default forest regrowth rates from the Intergovernmental Panel on Climate Change are underestimated by 32% and miss 8-fold variation within ecozones.Conversely, we conclude that previously reported maximum climate mitigation potential from natural forest regrowth is overestimated by 11% due to the use of overly high rates. Our results therefore provide a much needed and globally consistent method for assessing natural forest regrowth as a climate mitigation strategy. BackgroundTo constrain global warming, we must reduce emissions and capture excess carbon dioxide (CO2) in the atmosphere 1,2 . Restoring forest cover, defined here as the transition from < 25% tree cover to > 25% tree cover where forests historically occurred, is a promising option for additional carbon capture 3 and has been prioritized in many national and international goals 4,5 . It is deployable, scalable, and provides important biodiversity and ecosystem services 6 . Yet the magnitude and distribution of climate mitigation opportunity from restoring forest cover is poorly described, with large confidence intervals around estimates 2,3 . To evaluate the appropriateness of forest cover restoration for climate mitigation, compared to the multitude of other potential climate mitigation actions, countries, corporations, and multilateral entities need more accurate assessments of its potential 7 .Mitigation potential from restoring forest cover (reported here in terms of MgCO2 yr -1 ) is determined by the potential extent and location of new forest ("area of opportunity") and the rate at which those forests remove atmospheric CO2 (reported here in terms of MgC ha -1 yr -1 ). While there are now multiple estimates of area of opportunity based on diverse and often heavily debated criteria (e.g., references 3,8-11 ), we lack spatially explicit and globally comprehensive estimates of accumulation rates. This is especially true for natural forest regrowth, defined here as the recovery of forest cover on deforested lands through spontaneous regrowth after cessation of prior disturbance or land use. Many countries do not have nationally specific forest carbon accumulation rates and instead rely on default rates from the Intergovernmental Panel on Climate Change (IPCC) 12,13 . Although these rates were recently updated 8,12 , they nonetheless represent coarse estimates based on continent and ecological zone, and do not account for finer scale variation in rates due to mor...
Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)—protection, improved management and restoration of ecosystems—to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO 2 e yr −1 at less than 100 US$ per Mg CO 2 e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.
Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.