Estrogens can cause liver cholestatic disease. As downregulation of hepatocyte canalicular aquaporin-8 (AQP8) water channels has been involved in estrogen-induced bile secretory failure, we tested whether the archetypal water channel AQP1 improves 17α-ethinylestradiol (EE)-induced cholestasis. EE administration to rats reduced bile flow by 50%. A recombinant adenoviral (Ad) vector encoding human AQP1 (hAQP1), AdhAQP1, or a control vector was administered by retrograde bile ductal infusion. Hepatocyte canalicular hAQP1 expression was confirmed by liver immunostaining and immunoblotting in purified membrane fractions. Accordingly, canalicular osmotic water permeability was markedly increased. Bile flow, either basal or bile salt-stimulated was significantly augmented by over 50%. The choleretic efficiency of endogenous bile salts (that is, volume of bile per μmol of excreted bile salt) was significantly increased by 45% without changes in the biliary bile salt composition. Our data suggest that the adenoviral transfer of hAQP1 gene to the livers of EE-induced cholestatic rats improves bile flow by enhancing the AQP-mediated bile salt-induced canalicular water secretion. This novel finding might have potential therapeutic implications for cholestatic diseases.
Background/Aims: Contributions to the understanding of acute renal failure (ARF) pathogenesis have not been translated into an effective clinical therapy. We studied the effects of pretreatment with the angiotensin II type 1 (AT1) receptor blocker, losartan, on renal function, tissue injury, inflammatory response and serum aldosterone levels in a model of ischemic ARF. Methods: Rats underwent unilateral renal ischemia followed by 24 h of reperfusion (IR), and were pretreated or not with 8 (IRL8) or 80 (IRL80) mg/kg/day of losartan for 3 days. Results: IR kidneys showed marked renal dysfunction, epithelial damage, capillary congestion, increased myeloperoxidase (MPO) activity and increased TNF-α, IL1-β and IL-6 mRNA levels. IRL80 kidneys showed protection against dysfunction and tissue injury, associated with normal MPO activity and cytokine mRNA levels. The lower dose was not able to achieve the same degree of functional renoprotection and could not prevent an increase of MPO or proinflammatory cytokine mRNA levels. The high losartan dose completely prevented an increase of serum aldosterone levels induced by IR. Conclusion: Renoprotection of the high losartan dose would be mainly mediated by its anti-inflammatory actions. Our results show a potential pathophysiological role of AT1 activation in promoting renal dysfunction, structural injury, inflammation and aldosterone elevation after IR injury.
Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.