In the last few decades, consumers' growing attention to the close relationship between health and nutrition is emerging as a new trend, mostly regarding the incorporation of natural ingredients into food. Among those ingredients, microalgae are considered as innovative and promising compounds, rich in valuable nutrients and bioactive molecules. In the present work, 3D printed cookies were fortified with the microalga Arthrospira platensis aiming at developing a new functional food with antioxidant properties. A. platensis antioxidants were recovered using ultrasound-assisted extraction in hydroalcoholic solutions. Ethanol/water and biomass/solvent ratios were optimised through a Design of Experiments (DOE) approach, using the antioxidant activity (ORAC and ABTS) and total phenolic content (TPC) as response variables. The highest ORAC, ABTS and TPC values were observed in the extract obtained with 0% ethanol and 2.0% biomass; thus, this extract was chosen to be incorporated into a printable cookie dough. Three different incorporation approaches were followed: (1) dried biomass, (2) freeze-dried antioxidant extract and (3) antioxidant extract encapsulated into alginate microbeads to enhance the stability to heat, light, and oxygen during baking and further storage. All dough formulations presented shape fidelity with the 3D model. The cookies had a w values low enough to be microbiologically stable, and the texture remained constant after 30 days of storage. Moreover, the extract encapsulation promoted an improvement in the ORAC value and colour stability when compared to all other formulations, revealing the potential of A. platensis for the development of a functional 3D food-ink.
Drying has been applied to vegetables in order to preserve, store and transport these food products. However, drying implies not only physical changes, easily detectable by the consumer through visual assessment, but also chemical modifications. These are not always visible, but are responsible for alterations in colour, flavour and nutritional value, which compromise the overall quality of the final product. The main chemical changes associated with drying are related to the degradation of phytochemicals, such as vitamins, antioxidants, minerals, pigments and other bioactive compounds sensitive to heat, light and oxygen. Moreover, nutrient losses are inevitably associated with leaching as a result of the water removal from the vegetable during the drying process. In order to prevent or reduce nutrient losses and thus improve the quality of dried products, pretreatments are often applied. In this review, an overview of the procedures developed for dehydration of vegetables applying heat by convection, conduction or radiation is presented. The influence of pretreatments on nutritional and bioactive characteristics of dried vegetables is discussed. Blanching with steam, water or chemical solutions is the most commonly used, but power ultrasound, ohmic blanching, osmotic and edible coatings pretreatments have also been reported. The influence of the drying processes and conditions on nutritional contents and bioactive characteristics is also presented.
Great efforts have been made to introduce growth factors (GFs) onto 2D/3D constructs in order to control cell behavior. Platelet lysate (PL) presents itself as a cost-effective source of multiple GFs and other proteins. The instruction given by a construct-PL combination will depend on how its instructive cues are presented to the cells. The content, stability and conformation of the GFs affect their instruction. Strategies for a controlled incorporation of PL are needed. Herein, PL was incorporated into nanocoatings by layer-by-layer assembling with polysaccharides presenting different sulfation degrees (SD) and charges. Heparin and several marine polysaccharides were tested to evaluate their PL and GF incorporation capability. The consequent effects of those multilayers on human adipose derived stem cells (hASCs) were assessed in short-term cultures. Both nature of the polysaccharide and SD were important properties that influenced the adsorption of PL, vascular endothelial growth factor (VEGF), fibroblast growth factor b (FGFb) and platelet derived growth factor (PDGF). The sulfated polysaccharides-PL multilayers showed to be efficient in the promotion of morphological changes, serum-free adhesion and proliferation of high passage hASCs (P > 5). These biomimetic multilayers promise to be versatile platforms to fabricate instructive devices allowing a tunable incorporation of PL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.