Infection by the ciliate protozoan Ichthyophthirius multifiliis Fouquet, 1876 causes significant economic losses in freshwater aquaculture worldwide. Following the ban on the use of malachite green for treating food fish, there has been extensive research aimed at identifying suitable replacements. In this paper we critically assess drug and non-drug interventions, which have been tested for use or have been employed against this parasite and evaluate possibilities for their application in farm systems. Current treatments include the administration of formaldehyde, sodium chloride (salt), copper sulphate and potassium permanganate. However, purportedly more environmentally friendly drugs such as humic acid, potassium ferrate (VI), bronopol and the peracetic acid-based products have recently been tested and represent promising alternatives. Further investigation, is required to optimize the treatments and to establish precise protocols in order to minimize the quantity of drug employed whilst ensuring the most efficacious performance. At the same time, there needs to be a greater emphasis placed on the non-drug aspects of management strategies, including the use of non-chemical interventions focusing on the removal of free-swimming stages and tomocysts of I. multifiliis from farm culture systems. Use of such strategies provides the hope of more environmentally friendly alternatives for the control of I. multifiliis infections.
The ciliate protozoan Cryptocaryon irritans Brown, 1951, the 'marine white spot', causes one of the most important parasitic fish diseases, with extensive losses every year in mariculture and in the ornamental fish industry. In the present study, we explore the in vitro use of 8 different compounds against the theront (infective) stage of C. irritans; these compounds include extracts of natural products (epigallocatechin gallate (EGCG), L-DOPA, papain), peracetic acid-based compounds (Proxitane ® 5:23 and 15% peracetic acid, PAA), quinine-based compounds (quinacrine hydrochloride and chloroquine diphosphate) and hydrogen peroxide. All of these compounds had an effect on theront survival; however, only EGCG caused significant theront mortality when applied in doses ≥50 mg l -1 and over a period of 3 h; papain caused a maximum theront mortality of < 50%. We discuss the type of application and potential utility of the compounds tested as part of a management control strategy for C. irritans infections in marine aquaculture and the ornamental fish industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.