The p85a subunit of PI3-K and Btk are two crucial components of the B-cell receptor (BCR) signalling pathway. In the present study, we showed that primary splenic B cells from p85a null and xid (Btk-deficient) mice fail to induce cyclin D2 expression and enter early G1, but not S phase of the cell cycle in response to BCR engagement. Furthermore, these Btk or p85a null B cells displayed increased cell death compared with wild type following BCR engagement. These findings are further confirmed by studies showing that specific pharmacological inhibitors of Btk (LFM-A13), PI3-K (LY294002 and Wortmannin) and PLCc (U73122) also block cyclin D2 expression and S phase entry following BCR stimulation, as well as triggering apoptosis. Collectively, these data provide evidence for the concept that the B-cell signalosome (p85a, Btk, BLNK and PLCc) is involved in regulating cyclin D2 expression in response to BCR engagement. PKC and intracellular calcium are two major downstream effectors of the B-cell signalosome and can be activated by PMA and ionomycin, respectively. In small resting (G0) B cells, costimulation with PMA and ionomycin, but not PMA or ionomycin alone, induces cyclin D2 expression and cell-cycle progression. Consistent with this, we also showed that the BCR-mediated cyclin D2 induction could be abolished by pretreatment of resting B cells with specific inhibitors of capacitative Ca 2+ entry (SK&F 96365) or PKC (Go¨6850). Our present results lead us to propose a model in which the B-cell signalosome targets cyclin D2 via the Ca 2+ and PKCdependent signalling cascades to mediate cell-cycle progression in response to BCR engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.