Abstract:The global food market makes international players intrinsically connected through the flow of commodities, demand, production, and consumption. Local decisions, such as new economic policies or dietary shifts, can foster changes in coupled human-natural systems across long distances. Understanding the causes and effects of these changes is essential for agricultural-export countries, such as Brazil. Since 2000, Brazil has led the expansion of soybean planted area-19 million hectares, or 47.5% of the world's increase. Soybean is among the major crop commodities traded globally. We use the telecoupling framework to analyze (i) the international trade dynamics between Brazil and China as the cause of the increased production of Brazilian soybean since 2000; (ii) and the cascading effects of the Sino-Brazilian telecoupled soybean system for Brazilian maize production and exports, with attention to consequences on domestic prices, availability, and risks associated with climatic extreme events. Census-based data at state and county levels, policy analysis, and interviews with producers and stakeholders guided our methodological approach. We identified that the Brazilian soybean production decreased maize single crop production and accelerated maize as a second crop following soybean, a practice that makes farmers more vulnerable to precipitation anomalies (e.g., rainfall shortage). In addition, the two-crop system of soybean/maize pressures the Brazilian maize market when unexpected events such as extreme droughts strike and when this results in a failed maize harvest in the second crop, most of which is for domestic consumption rather than export. Our study suggests the need to incorporate the telecoupling framework in land use decision-making and understanding landscape changes.
China currently has the largest population in the world and is currently experiencing rapid economic and urban growth, becoming the world's number one pork and poultry consumer. In order to meet this growing demand for meat, China has increased its demand for soybeans to produce chicken and pork. It has imported soybeans from the United States, Brazil, and Argentina, while keeping its soybean production for direct human consumption stable at home. Brazil has become the largest soybean exporter to China, and, in response specifically to Chinese demand, has become the second largest producer of soybeans in the world. This has changed land use in Brazil, particularly in its central plateau. In this paper, we indicate how these two countries, telecoupled by trade in soybeans, are depending on each other as they try to balance environmental and economic objectives. Brazil, as a sending system, has created pressures on its natural ecosystems, which have led to losses particularly in the Cerrado biome and its ecotones in the Amazon's tropical moist forest biome. China, as a receiving system, has created a land asset important to regenerating its lost natural systems (e.g., forest cover areas). Both countries have different property rights regimes, which have created distinct circumstances in which they are to protect or regenerate their natural ecosystems.Throughout this paper, we analyze how both countries have dealt with the lure offered by the soybean commodity trade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.