We consider conditions under which an embedded eigenvalue of a self-adjoint operator remains embedded under small perturbations. In the case of a simple eigenvalue embedded in continuous spectrum of multiplicity m < ∞ we show that in favorable situations, the set of small perturbations of a suitable Banach space which do not remove the eigenvalue form a smooth submanifold of codimension m. We also have results regarding the cases when the eigenvalue is degenerate or when the multiplicity of the continuous spectrum is infinite.
Operators on unbounded domains may acquire eigenvalues that are embedded in the essential spectrum. Determining the fate of these embedded eigenvalues under small perturbations of the underlying operator is a challenging task, and the persistence properties of such eigenvalues are linked intimately to the multiplicity of the essential spectrum. In this paper, we consider the planar bilaplacian with potential and show that the set of potentials for which an embedded eigenvalue persists is locally an infinite-dimensional manifold with infinite codimension in an appropriate space of potentials
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.