The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for eryptosis, a mechanism for the RBC clearance from blood circulation. The process of PS exposure was investigated as function of the intracellular Ca2+ content and the activation of PKCα in human and sheep RBCs. Cells were treated with lysophosphatidic acid (LPA), 4-bromo-A23187, or phorbol-12 myristate-13 acetate (PMA) and analysed by flow cytometry, single cell fluorescence video imaging, or confocal microscopy. For human RBCs, no clear correlation existed between the number of cells with an elevated Ca2+ content and PS exposure. Results are explained by three different mechanisms responsible for the PS exposure in human RBCs: (i) Ca2+-stimulated scramblase activation (and flippase inhibition) by LPA, 4-bromo-A23187, and PMA; (ii) PKC activation by LPA and PMA; and (iii) enhanced lipid flop caused by LPA. In sheep RBCs, only the latter mechanism occurs suggesting absence of scramblase activity.
Despite exhibiting oncogenic events, patient's leukemia cells are responsive and dependent on signals from their malignant bone marrow (BM) microenvironment, which modulate their survival, cell cycle progression, trafficking and resistance to chemotherapy. Identification of the signaling pathways mediating this leukemia/microenvironment interplay is critical for the development of novel molecular targeted therapies.We observed that primary leukemia B-cell precursors aberrantly express receptors of the BAFF-system, BAFF-R, BCMA, and TACI. These receptors are functional as their ligation triggers activation of NF-κB, MAPK/JNK, and Akt signaling. Leukemia cells express surface BAFF and APRIL ligands, and soluble BAFF is significantly higher in leukemia patients in comparison to age-matched controls. Interestingly, leukemia cells also express surface APRIL, which seems to be encoded by APRIL-δ, a novel isoform that lacks the furin convertase domain. Importantly, we observed BM microenvironmental cells express the ligands BAFF and APRIL, including surface and secreted BAFF by BM endothelial cells. Functional studies showed that signals through BAFF-system receptors impact the survival and basal proliferation of leukemia B-cell precursors, and support the involvement of both homotypic and heterotypic mechanisms.This study shows an unforeseen role for the BAFF-system in the biology of precursor B-cell leukemia, and suggests that the target disruption of BAFF signals may constitute a valid strategy for the treatment of this cancer.
The identification of new tumor-associated antigens (TAA) is critical for the development of effective immunotherapeutic strategies, particularly in diseases like B-cell acute lymphoblastic leukemia (B-ALL), where few target epitopes are known. To accelerate the identification of novel TAA in B-ALL, we used a combination of expression profiling and reverse immunology. We compared gene expression profiles of primary B-ALL cells with their normal counterparts, B-cell precursors. Genes differentially expressed by B-ALL cells included many previously identified as TAA in other malignancies. Within this set of overexpressed genes, we focused on those that may be functionally important to the cancer cell. The apoptosis-related molecule, BAX, was highly correlated with the ALL class distinction. Therefore, we evaluated BAX and its isoforms as potential TAA. Peptides from the isoform BAX-D bound with high affinity to HLA-A*0201 and HLA-DR1.
HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA) library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.