Neuromuscular fatigue is the exercise-dependent decrease in the ability of muscle fibres to generate force. To investigate whether manipulation of brain excitability by transcranial direct current stimulation (tDCS; 1.5 mA, 10 min, 0.026 C/cm(2)) modulates neuromuscular fatigue, we evaluated the effect of brain polarization over the right motor areas of the cerebral cortex of healthy subjects on the endurance time for a submaximal isometric contraction of left elbow flexors. In 24 healthy volunteers the study protocol comprised an assessment of the maximum voluntary contraction (MVC) for the left elbow flexors and a fatiguing isometric contraction (35% of MVC), before and immediately after brain polarization. One hour elapsed between baseline (T0) and postconditioning (T1) evaluation. After tDCS, MVC remained unchanged from baseline (mean +/- SEM; anodal tDCS: T0, 154.4 +/- 18.07; T1, 142.8 +/- 16.62 N; cathodal tDCS: T0, 156 +/- 18.75; T1, 141.86 +/- 17.53 N; controls: T0, 148.8 +/- 6.64; T1, 137.6 +/- 7.36 N; P > 0.1). Conversely, endurance time decreased significantly less after anodal than after cathodal tDCS or no stimulation (-21.1 +/- 5.5%, -35.7 +/- 3.3% and -39.3 +/- 3.3%, respectively; P < 0.05). None of the evaluated electromyographic variables changed after tDCS. Anodal tDCS could improve endurance time by directly modulating motor cortical excitability, modulating premotor areas, decreasing fatigue-related muscle pain, increasing motivation and improving synergist muscle coupling. Our findings, showing that anodal tDCS over the motor areas of the cerebral cortex improves muscle endurance, open the way to increasing muscle endurance and decreasing muscle fatigue in normal (i.e. sports medicine) and pathological conditions.
Transcranial direct current stimulation (tDCS) delivered over the temporoparietal areas can specifically affect a recognition memory performance in patients with Alzheimer disease (AD). Because tDCS is simple, safe and inexpensive, our finding prompts studies using repeated tDCS, in conjunction with other therapeutic interventions for treating patients with AD.
Transcranial direct current stimulation (tDCS) has been proposed as an adjuvant technique to improve functional recovery after ischaemic stroke. This study evaluated the effect of tDCS over the left frontotemporal areas in eight chronic non-fluent post-stroke aphasic patients. The protocol consisted of the assessment of picture naming (accuracy and response time) before and immediately after anodal or cathodal tDCS (2 mA, 10 minutes) and sham stimulation. Whereas anodal tDCS and sham tDCS failed to induce any changes, cathodal tDCS significantly improved the accuracy of the picture naming task by a mean of 33.6% (SEM 13.8%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.