The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood but follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis. The array data were confirmed by qPCR for selected genes. A total of 6301 unique genes were identified as significantly expressed representing enriched specific functional categories such as 'RNA binding', 'translation initiation' and 'structural molecule activity'. Several genes, some not previously known to be associated with early oocyte development, were identified with exceptionally high expression levels, such as the anti-proliferative transmembrane protein with an epidermal growth factor-like and two follistatin-like domains (TMEFF2), the Rho-GTPase-activating protein oligophrenin 1 (OPHN1) and the mitochondrial-encoded ATPase6 (ATP6). Thus, the present study provides not only a technique to capture and perform transcriptome analysis of the sparse material of human oocytes from the earliest follicle stages but further includes a comprehensive basis for our understanding of the regulatory factors and pathways present during early human folliculogenesis.
BackgroundMusculocontractural Ehlers–Danlos Syndrome (mcEDS) is a rare connective tissue disorder caused by biallelic loss‐of‐function variants in CHST14 (mcEDS‐CHST14) or DSE (mcEDS‐DSE), both of which result in defective dermatan sulfate biosynthesis. Forty‐one patients with mcEDS‐CHST14 and three patients with mcEDS‐DSE have been described in the literature.MethodsClinical, molecular, and glycobiological findings in three additional patients with mcEDS‐DSE were investigated.ResultsThree patients from two families shared craniofacial characteristics (hypertelorism, blue sclera, midfacial hypoplasia), skeletal features (pectus and spinal deformities, characteristic finger shapes, progressive talipes deformities), skin features (fine or acrogeria‐like palmar creases), and ocular refractive errors. Homozygous pathogenic variants in DSE were found: c.960T>A/p.Tyr320* in patient 1 and c.996dupT/p.Val333Cysfs*4 in patients 2 and 3. No dermatan sulfate was detected in the urine sample from patient 1, suggesting a complete depletion of DS.ConclusionMcEDS‐DSE is a congenital multisystem disorder with progressive symptoms involving craniofacial, skeletal, cutaneous, and cardiovascular systems, similar to the symptoms of mcEDS‐CHST14. However, the burden of symptoms seems lower in patients with mcEDS‐DSE.
Background: Cell-free NIPT and cell-based NIPT are risk-free testing options using maternal blood samples to screen for fetal aneuploidies, but the methods differ. For cell-free NIPT, the fetal fraction of cell-free DNA in plasma is analyzed with a high background of maternal DNA. In contrast, for cell-based NIPT, a limited number of the rare, intact fetal cells are isolated for the genetic analysis. This case demonstrates the differences regarding testing for fetal sex-chromosomes anomalies (SCAs) between these two tests.Materials and Methods: A pregnant woman with mosaicism for Turner syndrome opted for NIPT in first trimester. For the cell-free NIPT analysis, DNA extraction, genome-wide massive parallel sequencing, and data analysis were carried out as described by the kit manufacturer (Illumina©, San Diego, CA, USA). For cell-based NIPT, the first sample gave no result, but the woman consented to repeat cell-based NIPT. After whole genome amplification and STR analysis, fetal DNA from three individual fetal cells was subjected to chromosomal microarray (aCGH, Agilent oligoarray, 180 kb).Results: Fetal fraction was 7%, and cell-free NIPT showed 2 copies of chromosomes 13, 18, and 21 and a decreased proportion of chromosome X, suggestive of fetal Turner syndrome. In contrast, the cell-based NIPT result showed no aneuploidy and two X-chromosomes in the fetus.Conclusion: cell-based NIPT may provide a non-invasive testing option to screen for SCAs in women with mosaicism for monosomy-X in blood, where cell-free NIPT cannot discriminate whether the X-loss is maternal or fetal.
Cryopreservation of ovarian tissue is a promising new technique for fertility preservation in patients facing gonadotoxic treatment. Ovarian tissue is extracted and cryo-stored at low temperature prior to treatment. If the woman becomes menopausal, the tissue can be transplanted and a few months later the woman will start to ovulate and be able to conceive, naturally or with assisted reproduction treatment. Currently, 12 healthy children have been born worldwide as a result of transplanting frozen/thawed ovarian tissue. Of these children 3 are Danish and a number of other Danish women are currently attempting to become pregnant. One of these women conceived naturally and had a normal intrauterine pregnancy following transplantation of cryopreserved ovarian tissue. However, the woman decided to terminate the pregnancy within the legal time frame. This pregnancy imposes cryopreservation of ovarian tissue for fertility preservation as a valid method and illustrates that personal life circumstances may rapidly change.
Silver is a metal with well-known antibacterial effects. This makes silver an attractive coating material for medical devices for use inside the body, e.g. orthopaedic prostheses and catheters used in neurosurgery as it has been found to reduce the high risk of infections. Lately, the use of nano-silver particles in the industry, e.g. woven into fabrics and furniture has increased, and thus the exposure to silver particles in daily life increases. To study the effect of metallic silver particles on nervous tissue, we injected micron-sized silver particles into the mouse brain by stereotactic procedures. After 7, 14 days and 9 months, the silver-exposed animals had considerable brain damage seen as cavity formation and inflammation adjacent to the injected metallic silver particles. The tissue loss involved both cortical and hippocampal structures and resulted in enlargement of the lateral ventricles. Autometallographic silver enhancement showed silver uptake in lysosomes of glia cells and neurons in the ipsilateral cortex and hippocampus alongside a minor uptake on the contralateral side. Silver was also detected in ependymal cells and the choroid plexus. After 9 months, spreading of silver to the kidneys was seen. Cell counts of immunostained sections showed that metallic silver induced a statistically significant inflammatory response, i.e. increased microgliosis (7 days: p < 0.0001; 14 days: p < 0.01; 9 months: p < 0.0001) and TNF-a expression (7 and 14 days: p < 0.0001; 9 months: p = 0.91). Significant astrogliosis (7, 14 days and 9 months: p < 0.0001) and increased metallothionein (MT I + II) expression (7 and 14 days: p < 0.0001; 9 months: p < 0.001) were also seen in silver-exposed brain tissue. We conclude that metallic silver implants release silver ions causing neuroinflammation and a progressive tissue loss in the brain.Many surgical procedures involve the introduction of foreign bodies, such as catheters, stents and prostheses to the body. As the presence of foreign objects increases the risk of infections, much effort is made to minimize such complications by choosing the right surface material for this type of medical devices [1]. Silver ions have well-known antibacterial effects [2-4] making this metal an attractive coating material as it has been found to reduce the high risk of infections [5]. In medicine, silver coatings are used, e.g., on catheters for neurosurgery and vascular insertion [6,7] and on orthopaedic prostheses [8,9]. Different silver compounds are also used in dressings and foils for the treatment of infections in chronic ulcers and for improving the healing of burn wounds [10][11][12]. Outside the medical industry, silver coatings and nanosized silver particles are used in various housekeeping products, such as washing machines as well as incorporated into clothing, underwear and socks [13]. Nano-sized particles will be endocytosed or pinocytosed [14], and silver grains smaller than 10-15 lm will be readily phagocytosed [15,16], but the presence of a bigger silver surfa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.